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Consider random variables Y and random vectors X with
values in R and S ⊂ R

m and the pertaining conditional
distribution function

F (y |x) := P(Y ≤ y |X = x).

Assume that F (·|x) is in the domain of attraction of some
GPD which parameters depend on x , thus

F (y |x) ≈ Wγ(x),µ(x),σ(x)(y), y > u.

where

Wγ,µ,σ(y) = 1 −

(

1 + γ
y − µ

σ

)

−1/γ

.
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Consider for example the case X : (Ω,A) → (R, B(R))

F (y |x) = W1/x ,0,γ/x(y)

and X has a gamma distribution with parameter γ then the
distribution of Y is a log–Pareto distribution

L(y) = 1 − (log (1 + x/σ))−1/γ .

Note that the tail of L cannot be approximated by any GPD.
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Considering iid copies (X1, Y1), . . . , (Xn, Yn) of the random
vector (X, Y ) and assuming

F (y |x) = Wγ(x),µ(x),σ(x)(y), y > u

one has two possible situations:
1 the covariates X i can be observed, so one can make

inference for the conditional distribution
2 the covariates X i cannot be observed, so one has to

take distributions different from GPDs into account
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Point Processes

A point process is a mapping
N : (Ω,A, P) → (M(T ),M(T )), where M(T ) is the space of
point measures µ =

∑k
i=1 εxi , xi ∈ T , on some space T .

Let B be a σ-algebra on T .
Then N(A) is for A ∈ B a N0-valued random variable.
Furtheron ν(A) := E(N(A)) defines a measure on (T ,B),
the intensity measure of N.
Example : empirical process

Nn =
n
∑

i=1

εXi

for iid random variables Xi on (T ,B).
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Poisson Processes

A point process N with finite intensity measure ν
(ν(T ) < ∞) is a Poisson process, if

for all disjoint Ai ∈ B, i = 1, ..., n, N(Ai) are
independent.

N(A) is for A ∈ B distributed according to a Poisson
distribution with parameter ν(A)

Remark: The distribution of a Poisson process is uniquely
determined by its intensity measure
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Representation of Poisson Processes

A Poisson process N with finite intensity measure ν has the
representation

N =

τ
∑

i=1

εXi

where

τ is distributed according to Poisson distribution with
parameter ν(T ), independent of

X1, X2, ... iid random variables on (T ,B) with
P {Xi ∈ B} = ν(B)

ν(T ) .
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Let

N =
τ
∑

i=1

ε(X i ,Yi ),

τ ∼ Pλ the Poisson point process of the observed data (on
T = S × R). Define

N [S,u] = N(· ∩ S × (u,∞))

the point process of exceedances over the threshold u and
the pertaining covariates.
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The Process of Exceedances

Now it holds that N [S,u] is again a Poisson Process

N [S,u] d
=

τ∗

∑

i=1

ε(X∗

i ,Y∗

i ) (1)

where τ∗ and
(

X∗

i , Y ∗

i

)

, i ∈ N are independent, τ∗ is a
Poisson random variable with parameter λ∗ = λP {Y > u},

P (Y ∗ ≤ y |X∗ = x ) = F [u] (u|x) (2)

and

P {X∗ ∈ B} = P (X ∈ B |Y > u ) . (3)
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Parametric Modeling

We assume that

F (y |x) = Wγθ(x),µθ(x),σθ(x)(y), y > u

where θ ∈ Θ ⊂ R
d is a parameter, for example if S = R one

may choose
γ(x) ≡ θ1 ∈ R,

σ(x) = exp(θ2 + θ3x), θ2, θ3 ∈ R (4)

as well as

µ(x) = θ4 + θ5x , θ4, θ5 ∈ R. (5)
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Densities of Poisson Processes

Let N be N0 arbitrary Poisson Processes on the space
(M(T ),M(T )) with finite intensity measures ν and ν0.
Let h be a ν0–density of ν.
Then L(N) has the L(N0)–density

g(µ) =

(

k
∏

i=1

h(xi)

)

exp (ν0(T ) − ν(T ))

for

µ =
k
∑

i=1

εxi .
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The intensity measure ν[S,u] of N [S,u] is given by

ν[S,u](B × (u, z]) = λ

∫

B

∫ z

u
f (y |x)dydL(X)(x)

where f (·|x) denotes the Lesbegue density of F (·|x).
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Let N0 be a Poisson process on S × R with intensity
measure ν0 = λ · (L (X) × P), where P is a probability
measure with positive density p on (u,∞).
The intensity measure ν[S,u] of N [S,u] has the ν0-density

h(y , x) =
wγθ(x),µθ(x),σθ(x)(y)

p(y)
, y > u.
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Thus the density of L
(

N [S,u]
)

with respect to L (N0) is given
by

g (η) =
k
∏

i=1

wγ(x∗

i ),µ(x∗

i ),σ(x∗

i )(y∗

i )

p(y∗

i )

· exp
(

λ − λ

∫

Wγ(x),µ(x),σ(x)(u)dL(X)(x)

)

for

η =
k
∑

i=1

ε(x∗

i ,y∗

i ).
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log–likelihood

The resulting log–Likelihood is given by

lη(θ) =
k
∑

i=1

log
(

wγθ(x∗

i ),µθ(x∗

i ),σθ(x∗

i )(y
∗

i )
)

− n
∫

(

1 − Wγθ(x),µθ(x),σθ(x)(u)
)

dL(X)(x),

for η =
∑k

i=1 ε(x∗

i ,y∗

i ) and n the size of the original sample.
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A Conditional Approach

Let N and N [S,u] be as before. Let π1, be the projection
mapping

π1

(

n
∑

i=1

ε(x i ,yi )

)

=
n
∑

i=1

εx i

and define
N1 = π1(N)

as well as
N [S,u]

1 = π1

(

N [S,u]
)
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A Conditional Approach

1 N1 carries no relevant information for the estimation
problem

2 distribution of the covariates should be kept out of the
considerations as far as possible

3 distribution of N and N [S,u] strongly depends on the
distribution of the covariates

Solution: We consider the conditional distribution

P
(

N [S,u] ∈ ·|N1 = µ
)

, µ =
n
∑

i=1

εx i

Advantage: This distribution carries all information about the
exceedances and the exceedance probability, yet the
distribution of the covariates has not to be accounted for.
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Conditional Likelihood

Let (x1, y1), . . . , (xn, yn) be the observed data

(x∗

1, y∗

1 ), . . . , (x∗

k , y∗

k ) the pertaining “exceedances”

x̃1, . . . , x̃n−k the covariates belonging to y -values
smaller then u.

let η =
∑k

i=1 ε(x∗

i ,y∗

i )

The conditional Likelihood is given by

lη,µ(θ) =
n−k
∏

i=1

Wγθ(x̃ i ),µθ(x̃ i ),σθ(x̃ i )(u)
k
∏

i=1

wγθ(x∗

i ),µθ(x∗

i ),σθ(x∗

i )(y
∗

i )
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Sketch of a Proof

First show that

P
((

N [S,u], N1

)

∈ A × B
∣

∣

∣
N [S,u]

1 = µ∗

)

= P
(

N1 ∈ B
∣

∣

∣
N [S,u]

1 = µ∗

)

P
(

N [S,u] ∈ A
∣

∣

∣
N [S,u]

1 = µ∗

)

,

for all A ∈ M (S × R) and B ∈ M (S).
Therefore

P
(

N [S,u] ∈ A |N1 = µ
)

=

∫ ∫

1A(η)dP
(

N [S,u] ∈ dη

∣

∣

∣
N [S,u] = µ∗

)

dP
(

N [S,u]
1 ∈ dµ∗ |N1 = µ

)

for all A ∈ M(S × R).
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Sketch of a Proof

Therefore it remains to determine the conditional
distributions

P
(

N [S,u]
1 ∈ ·

∣

∣

∣
N1 = µ

)

(6)

and

P
(

N [S,u] ∈ ·
∣

∣

∣
N [S,u]

1 = µ∗

)

. (7)
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Simulations

Recall the model above

F (y |x) = Wγθ(x),µθ(x),σθ(x)(y), y > u

where θ ∈ Θ ⊂ R
5

γ(x) ≡ θ1 ∈ R,

σ(x) = exp(θ2 + θ3x), θ2, θ3 ∈ R (8)

as well as

µ(x) = θ4 + θ5x , θ4, θ5 ∈ R. (9)

We choose θ1 = 0.6, θ2 = 0.2, θ3 = 0.8, θ4 = θ5 = 0.5
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Results
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Figure: Kernel densities of the conditional likelihood estimator
(solid) and the maximum–likelihood estimator (dashed) for θ2 and
θ3.
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Recall the example of the log–Pareto df

L(y) = 1 − (log (1 + x/σ))−1/γ .

1 all moments are infinite
2 the existence of log–moments depends on the

parameter γ

3 the tail of L is slowly varying

lim
t→∞

1 − L(tx)

1 − L(t)
= 1
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The log–Pareto Model

Question: What is an adequate model for such
distributions?

Lγ,β,σ(x) = 1 −

(

1 +
γ

β
log(1 +

β

σ
x)

)

−1/γ

x > 0, β, σ > 0, γ ∈ R,
the generalized log–Pareto distribution (GLPD).
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Relations to GPDs

The GPD can be obtained from the GLPD by varying the
parameters γ and β:

Lγ,β,σ(x) −−−→
γ→0

Wβ,σ(x) =: L0,β,σ(x)

Lγ,β,σ(x) −−−→
β→0

Wγ,σ(x) =: Lγ,0,σ(x)

Furthermore, if X ∼ Wβ,σ then Y := exp(β/γX ) − 1 is
distributed according to Lγ,β,σ.
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Exceedances under Power–Normalization

Let F and L be dfs such that

F [u]
(

sign(x)α(u) |x |λ(u)
)

−−−−−→
u→ω(F )

L(x), (10)

where

F [u](x) =
F (x) − F (u)

1 − F (u)
, x ≥ u.

We have

L(x) = W (log(x))

or

L(x) = W (− log(−x))

where W is a POT-stable df.
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Super-Heavy tailed Exceedances

If ω(F ) > 0 and L is continuous, then GLPDs of the form

L̂γ,β,σ(x) = 1 −

(

1 +
γ

β
log (x/σ)

)

−1/γ

, x > σ, β, σ > 0, γ ∈ R

are the only possible non degenerate limiting dfs in (10).
Note, that Pareto dfs are included for γ = 0. The case γ > 0
yields super–heavy tails.
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P–Pot Domains of Attraction

Let

L̂γ = L̂γ,1,1. (12)

The p–pot domain of attraction of L̂γ , Dp−pot(L̂γ), is defined
by the property

F ∈ Dp−pot(L̂γ) (13)

if (10) holds for F and L = L̂γ .
It can be shown that F ∈ Dp−pot(L̂γ) iff F ∗(·) = F (exp(·)) is
in the pot domain of attraction of a GPD with parameter γ
under linear normalization.
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Domains of Attraction of log–Pareto dfs

Consider Dp−pot(L̂γ) for some γ > 0.

For F ∈ Dp−pot(L̂γ) F ∗ is in the pot–domain of attraction of a
Pareto df.

In particular 1 − F ∗ is regular varying at infinity.

Thus the tail of F is slowly varying at infinity, and F is not in
the pot–domain of attraction of any GPD.
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P–Pot Stability

The log–Pareto df L̂γ,β,σ is p–pot stable:

L̂[u]
γ,β,σ

(

αuxλu
)

= L̂γ,β,σ(x), x > 0 (14)

for αu = uσ−λu and λu = 1 + γ/β log(u/σ) if u > σ and
λu > 0.
Alternatively

L̂[u]
γ,β,σ(x) = L̂γ,βu ,u(x), x > u, (15)

with βu = β + γ log(u/σ). The dfs of excesses is given by

L̂[u]
γ,β,σ(x + u) = 1 −

(

1 −
γ

βu
log (1 + x/u)

)

−1/γ

(16)

which is a GLPD Lγ,βu ,u with scale parameter u.
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