University of Siegen Department of Mathematics

When the POT–approach fails: super heavy tailed distributions and covariate information

Ulf Cormann

NCAR, Boulder

25.02.2009

Inhalt

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

1. Motivation

2. Modeling using Covariate Information

3. Super-Heavy Tailed Distributions

Overview

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

1. Motivation

- 2. Modeling using Covariate Information
- 3. Super-Heavy Tailed Distributions
- 4. Literature

Modelina usina Covariate Information

Super-Heavy Tailed Distributions

Literature

Consider random variables Y and random vectors **X** with values in \mathbb{R} and $S \subset \mathbb{R}^m$ and the pertaining conditional distribution function

$$F(y|\mathbf{x}) := P(Y \leq y|\mathbf{X} = \mathbf{x}).$$

Assume that $F(\cdot|\mathbf{x})$ is in the domain of attraction of some GPD which parameters depend on x, thus

$$F(y|\mathbf{x}) \approx W_{\gamma(\mathbf{x}),\mu(\mathbf{x}),\sigma(\mathbf{x})}(y), \quad y > u.$$

where

$$W_{\gamma,\mu,\sigma}(y) = 1 - \left(1 + \gamma \frac{y-\mu}{\sigma}\right)^{-1/\gamma}.$$

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Consider for example the case $X : (\Omega, A) \to (\mathbb{R}, \mathbb{B}(\mathbb{R}))$

$$F(y|x) = W_{1/x,0,\gamma/x}(y)$$

and ${\it X}$ has a gamma distribution with parameter γ then the distribution of Y is a log–Pareto distribution

$$L(y) = 1 - (\log(1 + x/\sigma))^{-1/\gamma}$$
.

Note that the tail of L cannot be approximated by any GPD.

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Considering iid copies $(X_1, Y_1), \dots, (X_n, Y_n)$ of the random vector (X, Y) and assuming

$$F(y|\mathbf{x}) = W_{\gamma(\mathbf{x}),\mu(\mathbf{x}),\sigma(\mathbf{x})}(y), \quad y > u$$

one has two possible situations:

- \bullet the covariates X_i can be observed, so one can make inference for the conditional distribution
- the covariates X_i cannot be observed, so one has to take distributions different from GPDs into account

Overview

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

1. Motivation

- 2. Modeling using Covariate Information
- 3. Super-Heavy Tailed Distributions
- 4. Literature

Point Processes

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

A point process is a mapping

 $N: (\Omega, \mathcal{A}, P) \to (\mathbb{M}(T), \mathcal{M}(T))$, where $\mathbb{M}(T)$ is the space of point measures $\mu = \sum_{i=1}^k \varepsilon_{X_i}$, $X_i \in T$, on some space T. Let \mathcal{B} be a σ -algebra on T.

Then N(A) is for $A \in \mathcal{B}$ a \mathbb{N}_0 -valued random variable. Furtheron $\nu(A) := E(N(A))$ defines a measure on (T, \mathcal{B}) , the intensity measure of N.

Example: empirical process

$$N_n = \sum_{i=1}^n \varepsilon_{X_i}$$

for iid random variables X_i on (T, \mathcal{B}) .

Poisson Processes

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

A point process N with finite intensity measure ν ($\nu(T) < \infty$) is a Poisson process, if

- for all disjoint $A_i \in \mathcal{B}$, i = 1, ..., n, $N(A_i)$ are independent.
- N(A) is for $A \in \mathcal{B}$ distributed according to a Poisson distribution with parameter $\nu(A)$

Remark: The distribution of a Poisson process is uniquely determined by its intensity measure

Representation of Poisson Processes

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

A Poisson process N with finite intensity measure ν has the representation

$$N = \sum_{i=1}^{\tau} \varepsilon_{X_i}$$

where

- τ is distributed according to Poisson distribution with parameter $\nu(T)$, independent of
- $X_1, X_2, ...$ iid random variables on (T, \mathcal{B}) with $P\{X_i \in B\} = \frac{\nu(B)}{\nu(T)}$.

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Let

$$N = \sum_{i=1}^{\tau} \varepsilon_{(\boldsymbol{X}_i, Y_i)},$$

 $au\sim \mathsf{P}_\lambda$ the Poisson point process of the observed data (on $T=\mathsf{S}\times\mathbb{R}$). Define

$$N^{[S,u]} = N(\cdot \cap S \times (u,\infty))$$

the point process of exceedances over the threshold u and the pertaining covariates.

The Process of Exceedances

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Now it holds that $N^{[S,u]}$ is again a Poisson Process

$$N^{[S,u]} \stackrel{d}{=} \sum_{i=1}^{\tau^*} \varepsilon_{\left(\boldsymbol{X}_i^*, Y_i^*\right)} \tag{1}$$

where τ^* and $(\mathbf{X}_i^*, \mathbf{Y}_i^*)$, $i \in \mathbb{N}$ are independent, τ^* is a Poisson random variable with parameter $\lambda^* = \lambda P\{Y > u\}$,

$$P(Y^* \le y | \mathbf{X}^* = \mathbf{x}) = F^{[u]}(u|\mathbf{x})$$
 (2)

and

$$P\{X^* \in B\} = P(X \in B | Y > u).$$
 (3)

Parametric Modeling

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

We assume that

$$F(y|\mathbf{x}) = W_{\gamma_{\theta}(\mathbf{x}),\mu_{\theta}(\mathbf{x}),\sigma_{\theta}(\mathbf{x})}(y), \quad y > u$$

where $\theta \in \Theta \subset \mathbb{R}^d$ is a parameter, for example if $S = \mathbb{R}$ one may choose

$$\gamma(\mathbf{x}) \equiv \theta_1 \in \mathbb{R},$$

$$\sigma(\mathbf{x}) = \exp(\theta_2 + \theta_3 \mathbf{x}), \quad \theta_2, \, \theta_3 \in \mathbb{R}$$
 (4)

as well as

$$\mu(\mathbf{x}) = \theta_4 + \theta_5 \mathbf{x}, \quad \theta_4, \theta_5 \in \mathbb{R}.$$
 (5)

Densities of Poisson Processes

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Distributions

Literature

Let N be N_0 arbitrary Poisson Processes on the space $(\mathbb{M}(T), \mathcal{M}(T))$ with finite intensity measures ν and ν_0 . Let h be a ν_0 -density of ν .

Then $\mathcal{L}(N)$ has the $\mathcal{L}(N_0)$ -density

$$g(\mu) = \left(\prod_{i=1}^{K} h(x_i)\right) \exp\left(\nu_0(T) - \nu(T)\right)$$

for

$$\mu = \sum_{i=1}^k \varepsilon_{\mathbf{x}_i}.$$

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

The intensity measure $\nu^{[S,u]}$ of $N^{[S,u]}$ is given by

$$u^{[S,u]}(B \times (u,z]) = \lambda \int_{B} \int_{u}^{z} f(y|\mathbf{x}) dy d\mathcal{L}(\mathbf{X})(\mathbf{x})$$

where $f(\cdot|\mathbf{x})$ denotes the Lesbegue density of $F(\cdot|\mathbf{x})$.

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Let N_0 be a Poisson process on $S \times \mathbb{R}$ with intensity measure $\nu_0 = \lambda \cdot (\mathcal{L}(\mathbf{X}) \times P)$, where P is a probability measure with positive density p on (u, ∞) . The intensity measure $\nu^{[S,u]}$ of $N^{[S,u]}$ has the ν_0 -density

$$h(y, \mathbf{x}) = \frac{w_{\gamma_{\theta}}(\mathbf{x}), \mu_{\theta}(\mathbf{x}), \sigma_{\theta}(\mathbf{x})}{p(y)}, \quad y > u.$$

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Thus the density of $\mathcal{L}\left(N^{[S,u]}\right)$ with respect to $\mathcal{L}\left(N_{0}\right)$ is given by

$$\begin{split} g\left(\boldsymbol{\eta}\right) &= \prod_{i=1}^{k} \frac{w_{\gamma\left(\boldsymbol{x}_{i}^{*}\right),\mu\left(\boldsymbol{x}_{i}^{*}\right),\sigma\left(\boldsymbol{x}_{i}^{*}\right)}\left(\boldsymbol{y}_{i}^{*}\right)}{p(\boldsymbol{y}_{i}^{*})} \\ &\quad \cdot \exp\left(\lambda - \lambda \int W_{\gamma\left(\boldsymbol{x}\right),\mu\left(\boldsymbol{x}\right),\sigma\left(\boldsymbol{x}\right)}(\boldsymbol{u})d\mathcal{L}(\boldsymbol{X})(\boldsymbol{x})\right) \end{split}$$

for

$$oldsymbol{\eta} = \sum_{i=1}^k arepsilon_{(oldsymbol{x}_i^*, oldsymbol{y}_i^*)}.$$

log-likelihood

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

The resulting log-Likelihood is given by

$$I_{\eta}(\theta) = \sum_{i=1}^{k} \log \left(w_{\gamma_{\theta}(\mathbf{x}_{i}^{*}), \mu_{\theta}(\mathbf{x}_{i}^{*}), \sigma_{\theta}(\mathbf{x}_{i}^{*})}(\mathbf{y}_{i}^{*}) \right) - n \int \left(1 - W_{\gamma_{\theta}(\mathbf{x}), \mu_{\theta}(\mathbf{x}), \sigma_{\theta}(\mathbf{x})}(u) \right) d\mathcal{L}(\mathbf{X})(\mathbf{x}),$$

for $\eta = \sum_{i=1}^k \varepsilon_{(\mathbf{x}_i^*, y_i^*)}$ and n the size of the original sample.

A Conditional Approach

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Let N and $N^{[S,u]}$ be as before. Let π_1 , be the projection mapping

$$\pi_1\left(\sum_{i=1}^n \varepsilon_{(\mathbf{x}_i,\mathbf{y}_i)}\right) = \sum_{i=1}^n \varepsilon_{\mathbf{x}_i}$$

and define

$$N_1 = \pi_1(N)$$

as well as

$$N_1^{[S,u]} = \pi_1 \left(N^{[S,u]} \right)$$

A Conditional Approach

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

- N_1 carries no relevant information for the estimation problem
- distribution of the covariates should be kept out of the considerations as far as possible
- **3** distribution of N and $N^{[S,u]}$ strongly depends on the distribution of the covariates

Solution: We consider the conditional distribution

$$P\left(N^{[S,u]} \in |N_1 = \mu\right), \ \mu = \sum_{i=1}^n \varepsilon_{\mathbf{x}_i}$$

Advantage: This distribution carries all information about the exceedances and the exceedance probability, yet the distribution of the covariates has not to be accounted for

Conditional Likelihood

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

 \bullet Let $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ be the observed data

- \bullet $(x_1^*, y_1^*), \dots, (x_k^*, y_k^*)$ the pertaining "exceedances"
- $\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_{n-k}$ the covariates belonging to y-values smaller then u.
- ullet let $oldsymbol{\eta} = \sum_{i=1}^k arepsilon_{\left(oldsymbol{x}_i^*, y_i^*
 ight)}^k$

The conditional Likelihood is given by

$$I_{\boldsymbol{\eta},\mu}(\theta) = \prod_{i=1}^{n-k} W_{\gamma_{\theta}(\tilde{\boldsymbol{x}}_i),\mu_{\theta}(\tilde{\boldsymbol{x}}_i),\sigma_{\theta}(\tilde{\boldsymbol{x}}_i)}(u) \prod_{i=1}^k W_{\gamma_{\theta}(\boldsymbol{x}_i^*),\mu_{\theta}(\boldsymbol{x}_i^*),\sigma_{\theta}(\boldsymbol{x}_i^*)}(\boldsymbol{y}_i^*)$$

Sketch of a Proof

Motivation

Modeling using Covariate Information

Super-Heavy Tailed

. .

Literature

First show that

$$P\left(\left(N^{[S,u]},N_{1}\right)\in A\times B\left|N_{1}^{[S,u]}=\mu^{*}\right)\right.$$

$$=P\left(N_{1}\in B\left|N_{1}^{[S,u]}=\mu^{*}\right)P\left(N^{[S,u]}\in A\left|N_{1}^{[S,u]}=\mu^{*}\right.\right)$$

for all $A \in \mathcal{M}(S \times \mathbb{R})$ and $B \in \mathcal{M}(S)$. Therefore

$$\begin{split} P\left(N^{[S,u]} \in A \mid N_1 = \mu\right) \\ = \int \int 1_A(\eta) dP\left(N^{[S,u]} \in d\eta \mid N^{[S,u]} = \mu^*\right) \\ dP\left(N_1^{[S,u]} \in d\mu^* \mid N_1 = \mu\right) \end{split}$$

for all $A \in \mathcal{M}(S \times \mathbb{R})$.

Sketch of a Proof

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Therefore it remains to determine the conditional distributions

$$P\left(N_1^{[S,u]} \in \cdot \middle| N_1 = \mu\right) \tag{6}$$

and

$$P\left(N^{[S,u]} \in \cdot \middle| N_1^{[S,u]} = \mu^*\right). \tag{7}$$

Simulations

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Recall the model above

$$F(y|\mathbf{x}) = W_{\gamma_{\theta}(\mathbf{x}),\mu_{\theta}(\mathbf{x}),\sigma_{\theta}(\mathbf{x})}(y), \quad y > u$$

where $\theta \in \Theta \subset \mathbb{R}^5$

$$\gamma(\mathbf{x}) \equiv \theta_1 \in \mathbb{R},$$

$$\sigma(\mathbf{x}) = \exp(\theta_2 + \theta_3 \mathbf{x}), \quad \theta_2, \, \theta_3 \in \mathbb{R}$$
 (8)

as well as

$$\mu(\mathbf{x}) = \theta_4 + \theta_5 \mathbf{x}, \quad \theta_4, \theta_5 \in \mathbb{R}.$$
 (9)

We choose $\theta_1 = 0.6$, $\theta_2 = 0.2$, $\theta_3 = 0.8$, $\theta_4 = \theta_5 = 0.5$

Results

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Figure: Kernel densities of the conditional likelihood estimator (solid) and the maximum–likelihood estimator (dashed) for θ_2 and θ_3 .

Overview

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

- 1. Motivation
- 2. Modeling using Covariate Information
- 3. Super-Heavy Tailed Distributions
- 4. Literature

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Recall the example of the log-Pareto df

$$L(y) = 1 - (\log (1 + x/\sigma))^{-1/\gamma}$$
.

- all moments are infinite
- the existence of log–moments depends on the parameter γ
- the tail of L is slowly varying

$$\lim_{t\to\infty}\frac{1-L(tx)}{1-L(t)}=1$$

The log-Pareto Model

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Question: What is an adequate model for such distributions?

$$L_{\gamma,\beta,\sigma}(x) = 1 - \left(1 + \frac{\gamma}{\beta}\log(1 + \frac{\beta}{\sigma}x)\right)^{-1/\gamma}$$

 $x > 0, \beta, \sigma > 0, \gamma \in \mathbb{R},$ the generalized log–Pareto distribution (GLPD).

Relations to GPDs

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

The GPD can be obtained from the GLPD by varying the parameters γ and β :

$$L_{\gamma,\beta,\sigma}(x) \xrightarrow[\gamma \to 0]{} W_{\beta,\sigma}(x) =: L_{0,\beta,\sigma}(x)$$

$$L_{\gamma,\beta,\sigma}(x) \xrightarrow[\beta \to 0]{} W_{\gamma,\sigma}(x) =: L_{\gamma,0,\sigma}(x)$$

Furthermore, if $X \sim W_{\beta,\sigma}$ then $Y := \exp(\beta/\gamma X) - 1$ is distributed according to $L_{\gamma,\beta,\sigma}$.

Exceedances under Power–Normalization

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Let *F* and *L* be dfs such that

$$F^{[u]}\left(\operatorname{sign}(x)\alpha(u)|x|^{\lambda(u)}\right)\xrightarrow[u\to\omega(F)]{}L(x),$$
 (10)

where

$$F^{[u]}(x) = \frac{F(x) - F(u)}{1 - F(u)}, \quad x \ge u.$$

We have

$$L(x) = W(\log(x))$$

or

$$L(x) = W(-\log(-x))$$

where W is a POT-stable df.

Super-Heavy tailed Exceedances

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

If $\omega(F) > 0$ and L is continuous, then GLPDs of the form

$$\hat{L}_{\gamma,\beta,\sigma}(x) = 1 - \left(1 + \frac{\gamma}{\beta}\log(x/\sigma)\right)^{-1/\gamma}, \quad x > \sigma, \ \beta,\sigma > 0, \gamma \in \mathbb{R}$$

are the only possible non degenerate limiting dfs in (10). Note, that Pareto dfs are included for $\gamma=0$. The case $\gamma>0$ yields super–heavy tails.

P-Pot Domains of Attraction

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Let

$$\hat{L}_{\gamma} = \hat{L}_{\gamma,1,1}. \tag{12}$$

The p-pot domain of attraction of \hat{L}_{γ} , $\mathcal{D}_{p-pot}(\hat{L}_{\gamma})$, is defined by the property

$$F \in \mathcal{D}_{p-pot}(\hat{\mathcal{L}}_{\gamma})$$
 (13)

if (10) holds for F and $L = \hat{L}_{\gamma}$.

It can be shown that $F \in \mathcal{D}_{p-pot}(\hat{L}_{\gamma})$ iff $F^*(\cdot) = F(\exp(\cdot))$ is in the pot domain of attraction of a GPD with parameter γ under linear normalization.

Domains of Attraction of log-Pareto dfs

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

Consider
$$\mathcal{D}_{p-pot}(\hat{L}_{\gamma})$$
 for some $\gamma > 0$.

For $F \in \mathcal{D}_{p-pot}(\hat{L}_{\gamma})$ F^* is in the pot–domain of attraction of a Pareto df.

In particular $1 - F^*$ is regular varying at infinity.

Thus the tail of F is slowly varying at infinity, and F is not in the pot–domain of attraction of any GPD.

Theorie und Praxis für Karrieren P—Pot Stability

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

Literature

The log–Pareto df $\hat{L}_{\gamma,\beta,\sigma}$ is p–pot stable:

$$\hat{L}_{\gamma,\beta,\sigma}^{[u]}\left(\alpha_{u}\mathbf{x}^{\lambda_{u}}\right) = \hat{L}_{\gamma,\beta,\sigma}(\mathbf{x}), \quad \mathbf{x} > 0$$
(14)

for $\alpha_u = u\sigma^{-\lambda_u}$ and $\lambda_u = 1 + \gamma/\beta \log(u/\sigma)$ if $u > \sigma$ and $\lambda_u > 0$.

$$\hat{L}_{\gamma,\beta,\sigma}^{[u]}(x) = \hat{L}_{\gamma,\beta_u,u}(x), \quad x > u, \tag{15}$$

with $\beta_u = \beta + \gamma \log(u/\sigma)$. The dfs of excesses is given by

$$\hat{L}_{\gamma,\beta,\sigma}^{[u]}(x+u) = 1 - \left(1 - \frac{\gamma}{\beta_u}\log\left(1 + x/u\right)\right)^{-1/\gamma} \tag{16}$$

which is a GLPD $L_{\gamma,\beta_u,u}$ with scale parameter u.

Overview

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

- 1. Motivation
- 2. Modeling using Covariate Information
- 3. Super-Heavy Tailed Distributions
- 4. Literature

Literature

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

- [1] Coles, S. (2001). An Introduction to the Statistical Modelling of Extreme Values, Springer, London.
- [2] Falk, M., Hüsler, J. and Reiss, R.–D. (1994). Laws of Small Numbers: Extremes and Rare Events, DMV–Seminar Bd 23, Birkhäuser, Basel, (2. Auflage 2004).
- [3] Reiss, R.–D. (1993). A Course on Point Processes, Springer, New York.

Literature

Motivation

Modeling using Covariate Information

Super-Heavy Tailed Distributions

- [4] Reiss, R.–D. and Thomas, M. (1994). Statistical Analysis of Extreme Values, Birkhäuser, Basel, (2. Auflage 2001, 3. Auflage 2007).
- [5] Tsay, R.S. (2005). Analysis of Financial Time Series, Wiley, New York.
- [6] Tsay, R. S. (1999). Extreme Value Analysis of Financial Data. Manuscript, Univ. Of Chicago.