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Motivating Question

The question under investigation is whether regional climate model

return level estimations can be used to obtain return level predictions

at the station level.
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Outline of Techniques

• Relationship of grid cell data to the n-year return levels at point

locations is explored

• Tail of the Generalized Extreme Value distribution (GEV) is fit

to the grid cell data above a given threshold

– Similar to the Peaks Over Threshold method

– However, here the method used for parameter estimation is

a Point Process approach

– Leads directly to the GEV parameters
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Techniques

• GEV Parameter estimates are used to generate n-year return

levels

• n-year returns at the point (station) locations are estimated the

same way

• Various models are explored to predict point location n-year re-

turn from grid cell n-year return
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Theory

The Generalized Extreme Value or GEV distribution is defined by

the equation

Pr{Y ≤ y} = exp

−
(
1 + ξ

y − µ

ψ

)−1/ξ

+

 (1)

In practice, however, fitting (1) directly to sample annual maxima

has a number of disadvantages.

• Many of the observational series are short (less than 25 years)

• Most observational series contain missing values - it is unclear

how to define the annual maximum when a significant fraction

of the daily values are missing.
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Theory

To take account of these deficiencies, an alternative class of meth-

ods has been developed, often known as the Peaks Over Thresholds

(POT) approach. For the distribution of the excess values, a com-

mon family of probability density functions is the Generalized Pareto

Distribution (GPD), introduced by Pickands (1975), and given by

Pr{X ≤ u+ x | X > u} = 1−
(
1 + ξ

x

σ

)−1/ξ

+
. (2)

One drawback in the POT model is that the parameters are directly

tied to the threshold value, u.

A third approach, the point process approach (Smith 1989, 2003,

Coles 2001), although operationally very similar to the POT ap-

proach, uses a representation of the probability distribution that

leads directly to the GEV parameters (µ, ψ, ξ).
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Theory

• The point process approach is similar to the peaks over thresh-

old method in that all observations over a given threshold are

considered.

• However, in the POT model the parameters are directly tied to

the threshold value whereas in the PP approach, the parameters

are not tied to the threshold value.

• Here we estimate the tail of the GEV. Instead of conditionally

modeling the tail as the GPD does, we are directly modeling the

tail values over a given threshold.

• The parameters for the GEV obtained through the point process

approach lead directly to the GEV parameters.
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Theory

The Point Process method considers N peaks, Y1...YN , observed at

times T1...TN . Pairs are viewed as points in the space [0, T ]× (u,∞)

(u=threshold), which form a nonhomogeneous Poisson process with

intensity measure:

λ(t, y) =
1

ψ

(
1 + ξ

(y − µ)

ψ

)−1
ξ −1

+
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Theory

By standard formulae for a Poisson Process, the likelihood is of the

form:

L(µ, ψ, ξ) =
N∏
i=1

λ(Ti, Yi) · exp
{
−
∫ T
0

∫ ∞

u
λ(t, y)dtdy

}

=
N∏
i=1

λ(Ti, Xi) · exp

−T
(
1 + ξ

u− µ

ψ

)−1/ξ

+

 . (3)
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Theory

In practice we work with the negative log likelihood, ` = − logL,

which leads to

`(µ, ψ, ξ) = N logψ+

(
1

ξ
+ 1

) N∑
i=1

log

(
1 + ξ

Yi − µ

ψ

)
+

(4)

+ T

(
1 + ξ

u− µ

ψ

)−1/ξ

+

where T is the length of the observation period in years and the (...)+
symbols essentially mean that the expression are only evaluated if

1 + ξu−µψ > 0 and 1 + ξYi−µψ > 0 for each i (if these constraints are

violated, L is automatically set to 0).
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Theory

• The basic method of estimation is therefore to choose the pa-

rameters (µ, ψ, ξ) to maximize (3) or equivalently to minimize

(4).

This is performed by numerical nonlinear optimization.

• In practice it is convenient to replace (µ, ψ, ξ) by (θ1, θ2, θ3) where

θ1 = µ, θ2 = logψ, θ3 = ξ (defining θ2 to be logψ rather than

ψ itself makes the algorithm more numerically stable, and has

the advantage that we don’t have to build the constraint ψ > 0

explicitly into the optimization procedure).
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Theory

• The PP approach should produce equivalent parameter values

as the POT approach, provided the threshold is high enough for

the model to fit the data.

• Provided the model fits the data, the parameters are indepen-

dent of the threshold (adjusting for estimation error). The ideal

threshold can be determined by considering where the parameter

values stabilize.

• In the GPD approach, the scale parameter still varies with thresh-

old, and is not necessarily the same as the scale parameter of

the PP approach.
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Theory

The n-year return values can be directly obtained using the estimated

GEV parameters obtained from the PP approach. Define yn by the

equation: (
1 + ξ

yn − µ

ψ

)−1/ξ

=
1

n

which leads to the formula:

yn =

µ+ ψn
ξ−1
ξ if ξ 6= 0,

µ+ ψ logn if ξ = 0.
(5)
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Data

• Point-source observational data from NCDC, originally obtained

from Dr. Pavel Groisman

• Covers period 1950-1999 over 5873 stations.

• The data are daily rainfall values; units are tenths of a millimeter.

• Grid-cell data are from NCEP

• Covering period 1948–2003 with no missing data on 288 2.5o

grid cells, converted to the same units as the NCDC data.

• Rainfall values are considered over the four seasons

• Threshold values are determined by the 95th and 97th percentiles

• Clustering method is used to define peaks
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Results
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 Comparisons of R and Fortran Codes for NCDC Rainfall Data

The parameter estimates obtained through Richard Smith’s point

process algorithm using the Quasi-Newton method are directly com-

parable to estimates obtained through the pp.fit function, using the

Nelder-Mead method, in the R software package ismev for the point

process approach.
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GEV Model Fit - Mu Parameter: 95 Grid - Point vs 97 Grid - Point
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GEV Model Fit - LogPsi Parameter: 95 Grid - Point vs 97 Grid - Point
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GEV Model Fit - Xi Parameter: 95 Grid - Point vs 97 Grid - Point
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100-Year Return: Point vs Grid - LogPoint vs Grid
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100-Year Return: LogPoint + Elevation vs Grid

100-Year Return w/ 97% Threshold: LogPoint + Elevation vs Grid

20



50-Year Return: LogPoint + Elevation vs Grid

50-Year Return w/ 97% Threshold: LogPoint + Elevation vs Grid
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Joint Modeling of 50 and 100-Year Returns: 95% Threshold

Joint Modeling of 50 and 100-Year Returns: 97% Threshold
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Model Results and Comparison Univariate Regres-

sion Predicting Point Locations 100-Year Return Level Using Grid Cell

100-Year Return

WINTER - 100 OBS AIC Intercept X1 X2
Point Grid 4207 62011 -85.7749 2.1267

log(Point) Grid 4207 4724 5.1957 0.0032
log(Pt) Grid+Elev 4207 4681 5.3775 0.0029 -0.000110
W: log(Pt) Grid 4026 3479 5.1250 0.0033

W: log(Pt) Grid+Elev 4025 3425 5.3186 0.0030 -0.000124
97 W: log(Pt) Grid 4003 3343 5.1253 0.0033

97 W: log(Pt) Grid+Elev 4013 3356 5.3074 0.0030 -0.000113
SPRING - 100 OBS AIC Intercept X1 X2

Point Grid 4339 64296 -96.0847 2.4299
log(Point) Grid 4339 3776 5.4950 0.0029

log(Pt) Grid+Elev 4339 3332 5.9362 0.0022 -0.000253
W: log(Pt) Grid 4132 2324 5.4042 0.0031

W: log(Pt) Grid+Elev 4138 1924 5.8960 0.0023 -0.000258
97 W: log(Pt) Grid 4150 2761 5.4572 0.0030

97 W: log(Pt) Grid+Elev 4145 2282 5.9736 0.0021 -0.000281

23



Conclusion and Future Work

• Modeling the tail of the GEV Distribution appears to produce
stable estimates as indicated across seasons and 95% and 97%
thresholds

• 100 and 50-year return levels are successfully modeled by season
at the point (station) level using grid-level return values and
station elevation

• Model coefficients are consistent within seasons across 95% and
97% thresholds

• Future work includes possible consideration of quadratic models

• Future work includes plans to test grid-point models on CCSM
data
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