

Statistical Extreme Value Theory (EVT) Part I

Eric Gilleland Research Applications Laboratory 21 July 2014, Trieste, Italy

National Center for Atmospheric Research

- The upper quartile of temperatures during the year?
- The maximum temperature during the year?
- The highest stream flow recording during the day?
- The lowest stream flow recordings accumulated over a three-day period for the year?
- Winning the lottery?

- When a variable exceeds some high threshold?
- When the year's maximum of a variable is very different from the usual maximum value?
- When an unusual event takes place, regardless of whether or not it is catastrophic?
- Only when an event causes catastrophes?

- The United States wins the World Cup for Soccer?
- Any team wins the World Cup?
- The Denver Broncos win the Super Bowl?

Suppose an "event" of interest, E, has a probability, p, of occurring and a probability 1 – p of not occurring.

Then, the number of events, N, that occur in n trials follows a binomial distribution. That is, the probability of having k "successes" in n trials is governed by the probability distribution:

$$\Pr\{\mathbf{N}=k\} = \begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k}$$

$$\Pr\left\{\mathbf{N}=k\right\} = \begin{pmatrix} n\\ k \end{pmatrix} p^k \left(1-p\right)^{n-k}$$

Now, suppose p is very small. That is, E has a very low probability of occurring.

Simon Denis Poisson introduced the probability distribution, named after him, obtained as the limit of the binomial distribution when p tends to zero at a rate that is fast enough so that the expected number of events is constant.

That is, as n goes to infinity, the product *n*p remains fixed.

That is, for p "small," N has an approximate Poisson distribution with intensity parameter $n\lambda$.

$\Pr{\{N=0\}} = e^{-n\lambda}, \Pr{\{N>0\}} = 1 - e^{-n\lambda}$

We're looking for events with a very low probability of occurrence (e.g., if $n \ge 20$ and $p \le 0.05$ or $n \ge 100$ and $np \le 10$).

Does not mean that the event is impactful!

Does not mean that an impactful event must be governed by EVT!

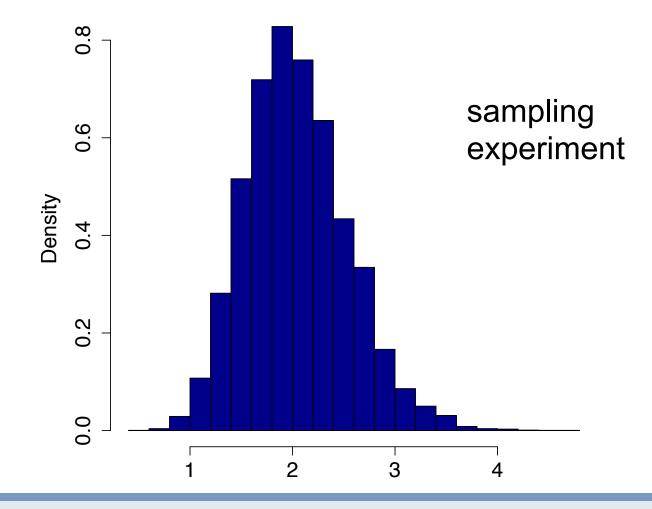
Inference about the maximum

- If I have a sample of size 10, how many maxima do I have?
- If I have a sample of size 1000?
- Is it possible, in the future, to see a value larger than what I've seen before?
- How can I infer about such a value?
- What form of distribution arises for the maximum?

Extreme Value Theory Background

Maxima of samples of size 30 from standard normal distribution

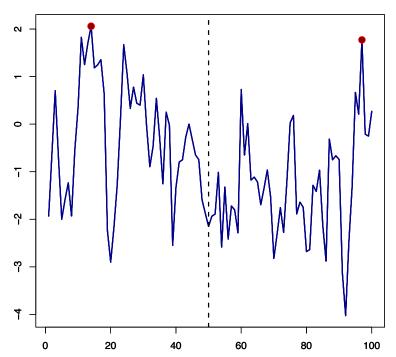
NCAR



Extreme Value Theory Background: Max Stability

 $\max\{x_1, ..., x_{2n}\} =$

max{ max{ $x_1, ..., x_n$ }, max{ $x_{n+1}, ..., x_{2n}$ }}.



NCAR

Extreme Value Theory Background: Max Stability

In other words, the cumulative distribution function (cdf), say G, must satisfy

 $G^{2}(x) = G(ax + b)$

where a > 0 and b are constants.

Let $X_1, ..., X_n$ be independent and identically distributed, and define $M_n = \max\{X_1, ..., X_n\}$.

Suppose there exist constants $a_n > 0$ and b_n such that

$$\Pr\{ (M_n - b_n) / a_n \le x \} \longrightarrow G(x) \text{ as } n \longrightarrow \infty,$$

where G is a non-degenerate cdf.

Then, G must be a generalized extreme value (GEV) cdf. That is,

$$G(x;\mu,\sigma,\xi) = \exp\left\{-\left[1+\xi\frac{x-\mu}{\sigma}\right]^{-1/\xi}\right\}$$

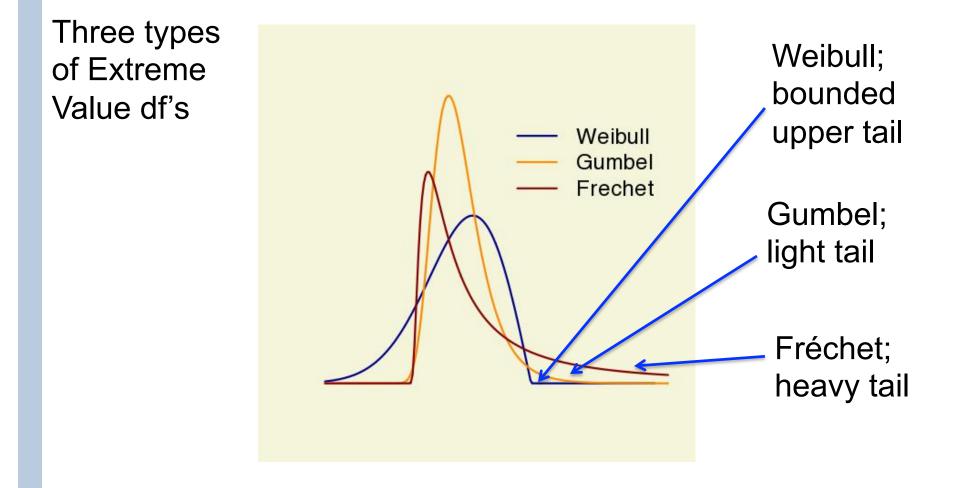
defined where the term inside the [] and σ are positive.

Note that this is of the same form as the Poisson distribution!

$$G(x;\mu,\sigma,\xi) = \exp\left\{-\left[1+\xi\frac{x-\mu}{\sigma}\right]^{-1/\xi}\right\}$$

Three parameters:

- µ is the location parameter
- $\sigma > 0$ the scale parameter
- ξ is the shape parameter



Predicted Speed Limits

Thoroughbreds (Kentucky Derby)	≈ 38 mph
Greyhounds (English Derby)	≈ 38 mph
Men (100 m distance)	≈ 24 mph
Women (100 m distance)	≈ 22 mph
Women (marathon distance)	≈ 12 mph
Women (marathon distance using a different model)	≈ 11.45 mph

Paula Radcliffe, 11.6 ^u mph world marathon record London Marathon, 13 April 2003

Denny, M.W., 2008, *J. Experim. Biol.*, **211**:3836–3849.

Weibull type:

temperature, wind speed, sea level *negative* shape parameter bounded upper tail at:

$$\mu - \frac{\sigma}{\xi}$$

Gumbel type:

"Domain of attraction" for many common distributions (e.g., normal, exponential, gamma)

limit as shape parameter approaches zero.

"light" upper tail

Fréchet type:

precipitation, stream flow, economic damage

positive shape parameter

"heavy" upper tail

infinite k-th order moment if $k \ge 1 / \xi$ (e.g., infinite variance if $\xi \ge \frac{1}{2}$)

- Fit directly to *block* maxima, with relatively long blocks
 - annual maximum of daily precipitation amount
 - highest temperature over a given year
 - annual peak stream flow
- Advantages
 - Do not necessarily need to explicitly model annual and diurnal cycles
 - Do not necessarily need to explicitly model temporal dependence

Parameter estimation

- Maximum Likelihood Estimation (MLE)
- L-moments (other moment-based estimators)
- Bayesian estimation
- various fast estimators (e.g., Hill estimator for shape parameter)

MLE

Given observed block maxima $Z_1 = z_1, \dots, Z_m = z_m$,

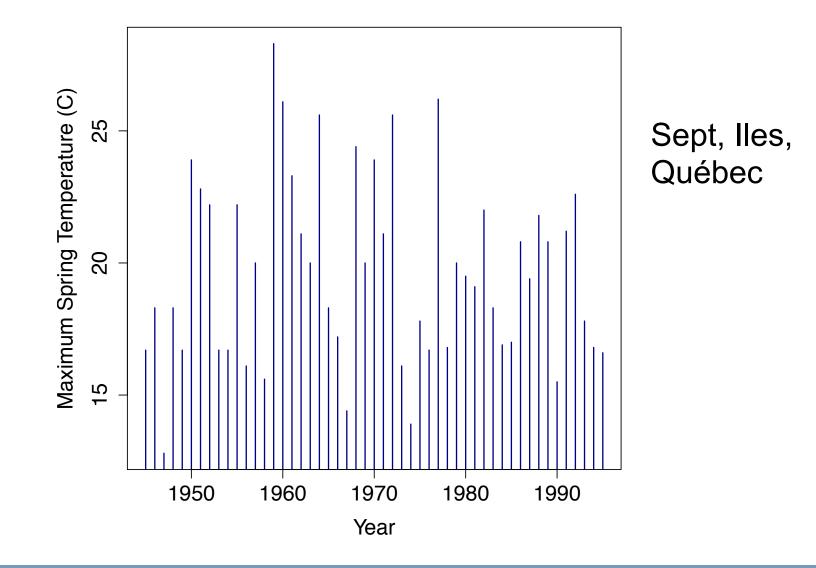
minimize the negative log-likelihood (-In $L(z_1,..., z_m; \mu, \sigma, \xi)$)

of observing the sample with respect to the three parameters.

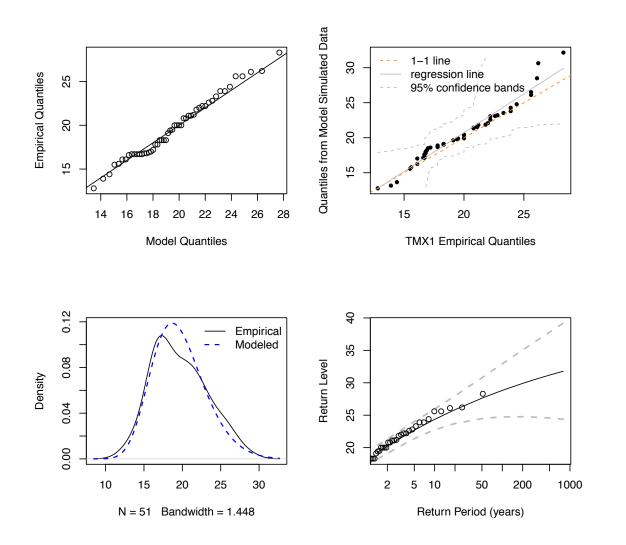
Allows for employing the likelihood-ratio test to test one model against another (nested) model.

Model 1: -In $L(z_1,..., z_m; \mu, \sigma, \xi = 0)$ Model 2: -In $L(z_1,..., z_m; \mu, \sigma, \xi)$

If $\xi = 0$, then V = 2 * (Model 2 – Model 1) has approximate χ^2 distribution with 1 degree of freedom for large m.



fevd(x = TMX1, data = SEPTsp)



Sept, Iles, Québec

	95% lower Cl	Estimate	95% upper Cl
μ	17.22	18.20	19.18
σ	2.42	3.13	3.84
ξ	-0.37	-0.14	0.09
100-year return level	24.72 °C	28.81 °C	32.90 °C

Sept, Iles, Québec

Extreme Value Theory: Return Levels

Assume stationarity (i.e. unchanging climate)

Return period / Return Level

Seek x_p such that $G(x_p) = 1 - p$, where 1 / p is the return period. That is,

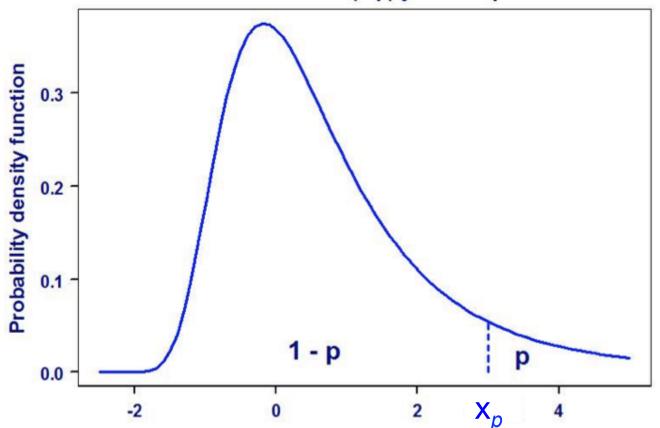
$$x_p = G^{-1}(1 - p; \mu, \sigma, \xi), 0$$

Easily found for the GEV cdf.

Example, p = 0.01 corresponds to 100-year return period (assuming annual blocks).

Extreme Value Theory: Return Levels

Return level with (1/p)-yr return period



Conclusion of Part I: Questions?