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Motivation

Colorado Lottery
Pr{Winning ≥ $10, 000 in one drawing} ≈

0.000001306024

In ten years, playing one ticket
everyday, Pr{Winning ≥ $10, 000} ≈

0.004793062

In 100 years ≈ 0.05003321

In 1000 years ≈ 0.7686185

Law of small numbers: events with small probably rarely happen, but
have many opportunities to happen. These follow a
Poisson distribution.
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Motivation

Colorado Lottery

Can also talk about waiting time probability. The exponential
distribution models this.
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Motivation

Colorado Lottery

Can also talk about waiting time probability. The exponential
distribution models this. For example, the probability that it will
take longer than a year to win the lottery (at one ticket per day) is
≈ 0.999523, longer than ten years ≈ 0.9952411, longer than 500 years
≈ 0.7877987, and so on (decays exponentially, but with a very slow
rate).
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Motivation

Colorado Lottery

Another way to put it is that the expected number of years that it
will take to win more than $10,000 in the lottery (buying one ticket
per day) is about 2,096 years. If a ticket costs $1, then we can expect
to spend $765,682.70 before winning at least $10,000.
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Motivation

Taleb, N.N. 2010: The Black Swan: The impact of the highly improb-
able, Random House, New York, NY, 444 pp.
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Outline

• Further motivation for why extremes are of interest, and why they
require careful attention to analyze them.

• Introduce the basics of statistical Extreme Value Analysis (EVA).

• Discuss some limitations for practical applications (climate heavy).

• Introduce the idea of correlation, and why this topic has caused a
lot of controversy regarding the current economic crisis.
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Motivation

On the eve of the events in 1914 leading to WWI, would you have
guessed what would happen next?

Archduke Franz Ferdinand of Austria

How about the rise of
Hitler and WWII?

Adolf Hitler
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Motivation

The impact of computers?
Spread and impact of the internet?
The stock market crash of 1987, and its surprising recovery?
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Motivation

Retrospective Predictability
Different from Prospective Predictability. Once something has happened,
it is easier to trace the steps to find the cause and effect.

Perspective
Insider Trading can lead to an extreme event that is well prospectively
predicted by those on the inside, but if done right, is a surprise to
everyone else (ethics).

Risk
Have you considered extreme events in your risk analysis for your
financial portfolio?
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Motivation

Taleb defines a Black Swan event as

• being rare

• having an extreme impact

• being predictable retrospectively, not prospectively.
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Motivation

Randomness and Large Deviations

Focus is typically on central tendencies,
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Focus is typically on central tendencies,
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Motivation

Law of Large Numbers, Sum Stability, Central Limit Theorem
And other results give theoretical support for use of the
Normal distribution for analyzing most data.
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Motivation

Law of Large Numbers, Sum Stability, Central Limit Theorem
And other results give theoretical support for use of the
Normal distribution for analyzing most data.

But, it is the possible
extreme (or rare) events that
are the most influencial.
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Background

Extremal Types Theorem

Theoretical support for using the Extreme Value Distributions
(EVD’s) for extrema .

• Valid for maxima over very large blocks, or

• Excesses over a very high threshold.

It is possible that there is no appropriate distribution for extremes,
but if there is one, it must be from the Generalized Extreme Value
(GEV) family (block maxima) or the Generalized Pareto (GP) family
(excesses over a high threshold). The two families are related.
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Background

Extremal Types Theorem

Theoretical support for using the Extreme Value Distributions
(EVD’s) for extrema .

• Valid for maxima over very large blocks, or

• Excesses over a very high threshold.

It is possible that there is no appropriate distribution for extremes,
but if there is one, it must be from the Generalized Extreme Value
(GEV) family (block maxima) or the Generalized Pareto (GP) family
(excesses over a high threshold). The two families are related.
Poisson process allows for a nice characterization of the threshold
excess model that neatly ties it back to the GEV distribution.
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Background

Simulated Maxima
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Background

GEV

Three parameters: location, scale and shape.

Pr{X ≤ z} = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ}
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Background

GEV

Three parameters: location, scale and shape.

Pr{X ≤ z} = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ}

Three types of tail behavior:

1. Bounded upper tail (ξ < 0, Weibull),

2. light tail (ξ = 0, Gumbel), and

3. heavy tail (ξ > 0, Fréchet).
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Background

Weibull Type

Bounded upper tail is a function of parameters. Namely, µ− σ/ξ.

ξ < 0
Temperature, Wind Speed,
Sea Level
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Background

Weibull Type
Predicted Speed Limits for:
Thoroughbreds (Kentucky Derby) ≈ 38 mph
Greyhounds (English Derby) ≈ 38 mph
Men (100 m distance) ≈ 24 mph
Women (100 m distance) ≈ 22 mph
Men (10 km distance) ≈ 15 mph
Women (marathon distance) ≈ 12 mph
Women (marathon distance, population model)

≈ 11.45 mph

Paula Radcliffe, 11.6 mph world marathon record

Denny, M.W., 2008: Limits to running speed in dogs, horses and
humans. J. Experim. Biol., 211:3836–3849.
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Background

Gumbel Type

Light-tailed distribution (i.e., decays exponentially)

ξ = 0
Domain of attraction for many
common distributions
(e.g., the normal distribution)
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Background

Gumbel Type

Light-tailed distribution (i.e., decays exponentially)

ξ = 0
Domain of attraction for many
common distributions
(e.g., the normal distribution)

Single point in a continuous parameter space!
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Background

Fréchet Type

Heavy-tailed distribution (i.e., decays polynomially)
Bounded lower tail at µ− σ/ξ.

ξ > 0
Precipitation, Stream Flow,
Economic Impacts
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Background

Fréchet Type

Heavy-tailed distribution (i.e., decays polynomially)
Bounded lower tail at µ− σ/ξ.

ξ > 0
Precipitation, Stream Flow,
Economic Impacts

Infinite mean if ξ ≥ 1!
Infinite variance if ξ ≥ 1/2!
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Background

All three types together
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Background

Analogous for Peaks Over a Threshold (POT) approach

Generalized Pareto Distribution (GPD), which has two parameters:
scale and shape. Threshold replaces the location parameter.
Three Types:

1. Beta (ξ < 0), bounded above at threshold−σ/ξ
2. Exponential (ξ = 0), light tail

3. Pareto (ξ > 0), heavy tail
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Background

Minima
Same as maxima using the relation:

min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}
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Background

Minima
Same as maxima using the relation:

min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}

Analogous for POT approach: Look at negatives of deficits under a
threshold instead of excesses over a threshold.
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Background

Block Maxima vs. POT
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Background

Block Maxima vs. POT
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Background

Block Maxima vs. POT
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Examples

Fort Collins, Colorado
daily precipitation amount

• Time series of daily precipitation
amount (inches), 1900–1999.

• Semi-arid region.

• Marked annual cycle in precipitation
(wettest in late spring/early summer,
driest in winter).

• No obvious long-term trend.

• Recent flood, 28 July 1997.
(substantial damage to
Colorado State University)

http://ccc.atmos.colostate.edu/~odie/rain.html
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Examples

Fort Collins, Colorado precipitation
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Examples

Fort Collins, Colorado Annual Maximum Precipitation

How often is such an
extreme expected?
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Examples

Fort Collins, Colorado precipitation
Gumbel hypothesis rejected at 5% level.

ξ ≈ 0.17, 95% CI ≈ (0.01, 0.37)

Fréchet (heavy tail)
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Examples
Fort Collins, Colorado precipitation

Risk Communication
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Examples
Fort Collins, Colorado precipitation

Risk Communication
Easy to invert GEV distribution to get quantiles, which for
block maxima are Return Levels .
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Examples
Fort Collins, Colorado precipitation

Risk Communication
Easy to invert GEV distribution to get quantiles, which for
block maxima are Return Levels .

The return level is the value expected to be
exceeded on average once every 1/p years.
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Examples
Fort Collins, Colorado precipitation

Risk Communication

For 1/p = 10 years, the return level is ≈ 2.8 inches with
95% CI ≈ (2.4, 3.2) inches.

For 1/p = 100 years, the return level is ≈ 5.1 inches
with 95% CI ≈ (3.4, 6.8) inches.
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Examples
Fort Collins, Colorado precipitation

Risk Communication

Pr{annual max. precip. ≥ 3 inches} ≈ 0.08
That is, the return period for 3 inches
of accumulated rainfall at this gauge
in Fort Collins is estimated to be
about 12.5 years.

47



Examples

Fort Collins, Colorado precipitation

Can also obtain other information, such as

• Mean annual maximum daily precipitation accumulation ≈ 1.76
inches (6= µ̂ ≈ 1.35).

• Variance is ≈ 0.84 inches2.

• Standard deviation is ≈ 0.92 inches (6= σ̂ ≈ 0.53).
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Background
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Examples

Hurricane damage
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Economic Damage from Hurricanes (1925−1995)

Year

bi
lli

on
 U

S
$

Economic damage caused
by hurricanes from 1926
to 1995.

Trends in societal
vulnerability removed.

Excess over threshold of
u = 6 billion US$.
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Examples

Hurricane damage

10 20 30 40 50 60 70

0.
00

0.
05

0.
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0.
15

0.
20

GPD

pd
f

σ̂ ≈ 4.589

ξ̂ ≈ 0.512

95% CI for shape
parameter using
profile likelihood.
≈ (0.05, 1.56)
Heavy tail!
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Examples

Hurricane Dennis (2005)
Caused at least 89 deaths and
2.23 billion USD in damage.

Impactful despite being under the 6 billion USD threshold!
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Examples

Phoenix (airport) minimum temperature (oF)
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July and August 1948–1990.

Urban heat island (warming
trend as cities grow).

Model lower tail as upper tail
after negation.

Dependence over the threshold.

Temporal trend!
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Examples

Phoenix minimum temperature

1950 1960 1970 1980 1990
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Phoenix summer minimum temperature
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Regression-like approach.
Covariate information in
GEV parameters.
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Examples

http://pubs.usgs.gov/fs/FS-229-96

Rapid urban
development
started about 1970.

55



Extreme Value Problems in Climatology

2006 European Heat Wave F5 Tornado in Elie Manitoba
(Fig. from KNMI) on Friday, June 22nd, 2007
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Extreme Value Problems in Climatology

●

●

Banff Calgary

~40−km CFDDA reanalysis (1985−2005)
~200−km NCAR/NCEP reanalysis (1980−1999)
~150−km CCSM3 regional climate model
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Extremes vs Extreme Impacts

Extremes
May or may not have an extreme impact depending on various factors
(e.g., location, duration).

Combinations of ordinary conditions
Frozen ground and rain (e.g., 1959 Ohio statewide flood).
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Weather Spells

Many different ways to define them
technically.

Do extremes of lengths of spells follow EV df’s?

The same type of weather spell may or may not be important
depending on where it occurs.

Photo from NCAR Digital Image Library, DI00325.
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Defining an Extreme Event

What is a Drought?

"a period of abnormally dry weather sufficiently prolonged for the lack
of water to cause serious hydrologic imbalance in the affected area."
-Glossary of Meteorology (1959)

Photo from NCAR’s digital image library, DIO1492.
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Defining an Extreme Event

What is a Drought?

Meteorological–a measure of departure of precipitation from normal.
Due to climatic differences, what might be considered a drought
in one location of the country may not be a drought in another
location.

Agricultural–refers to a situation where the amount of moisture in
the soil no longer meets the needs of a particular crop.

Hydrological–occurs when surface and subsurface water supplies are
below normal.

Socioeconomic–refers to the situation that occurs when physical
water shortages begin to affect people.

http://www.wrh.noaa.gov/fgz/science/drought.php?wfo=fgz
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Defining an Extreme Event

What is a Heat Wave?
(e.g., Meehl and Tebaldi, 2004, Science, 305, 994–997):

• Three-day worst heat event: mean annual 3-day warmest
nighttime minima event.

• Threshold excess: The longest period of consecutive days
satisfying:

1. daily maximum temperature above T1 for at least three days,
2. average daily maximum temperature above T1 for entire period,

and
3. daily maximum temperature above T2 for every day of entire

period.

T1 = 97.5th percentile of the df of maximum temperatures in observed
and present-day climate simulations. T2 = 81st percentile.
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Weather Spells

Some things to consider
• How should a spell be defined?

– In terms of impacts? (Varies greatly by region)
– In terms of perceived impact (e.g., perceived temperature)?
(Varies by person)

– By combinations of variables? (not necessarily extreme)
– Duration of some persistent event?
– Can/Should EVD’s be used for these types of phenomena?

• Often only seasons are examined (e.g., summer for heat waves),
but times of seasons may be changing, and spells may also shift in
time.

• Large-scale phenomena important, as well as local conditions and
characteristics.
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Severe Weather

As climate models become better in resolution, they may resolve some
severe weather phenomena, such as hurricanes. However, other types
of severe weather may still require higher resolution.

• Use large-scale indicators to analyze conditions ripe for severe
weather,

• Use climate models as drivers for finer scale weather models,

• Statistical approach to current trends in observations,

• Model EVD with means and variances as covariates,

• Other?
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Extreme Value Problems in Climatology: Discussion

• How should extreme events be defined? Deadliness? Perception-
based? Statistically? Economically? Other?

•What is the relationship between changes in the mean and changes
in extremes? What about variability? Higher order moments?

• If climate models project the distribution of atmospheric variables,
then do they accurately portray them? Enough so that extrema
are correctly characterized?

• If climate models only project the mean, then can anything be
said about extremes?

• How can it be determined if small changes in high values of large-
scale indicators lead to a shift in the distribution of severe weather
conditional on the indicators?
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Extreme Value Problems in Climatology: Discussion

• How do we verify climate models, especially for inferring about
extremes?

• Extremes are often largely dependent on local conditions (e.g.,
topography, surface conditions, atmospheric phenomena, etc.), as
well as larger scale processes.

• Can a metric for climate change pertaining to extremes be
developed that makes sense, and provides reasonably accurate
information?

• How can uncertainty be characterized? Is there too much
uncertainty to make inferences about extremes?

• How can spatial structure be taken into account for extremes?

• Many extreme events, and especially extreme impact events, result
from multivariate processes. How can this be addressed?
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Economic Crisis

Salmon, F., 2009: Recipe for disaster: The formula that killed Wall
Street, Wired magazine, 23 February, 2009, 7 pp., Available at:
http://www.wired.com/print/techbiz/it/magazine/17-03/wp_quant

Embrechts, P., Lectures on, “Did a Mathematical Formula Really
Blow Up Wall Street?"

Gaussian copula (aka, David X. Li’s formula)
“His method was adopted by everybody from bond investors and Wall
Street banks to ratings agencies and regulators. And it became so
deeply entrenched–and was making people so much money–that
warnings about its limitations were largely ignored." –Salmon, 2009.
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Economic Crisis

Correlation
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Slide from Paul Embrechts
Professor, ETH Zurich, Dept. of Mathematics
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Software

http://www.assessment.ucar.edu/toolkit/
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Thanks! Questions?
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