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A couple of relevant papers (not explicitly cited)

Coles SG, JA Tawn, and RL Smith. (1994). A seasonal
Markov model for extremely low temperatures. Environ-
metrics, 5:221–239.

Smith RL, JA Tawn, and SG Coles. (1997). Markov chain
models for threshold exceedances. Biometrika, 84(2):249–
268.
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Markov chain models for extreme wind speeds

Outline

• Background and Motivation

– Dependence in threshold exceedances

– Wind Speed Data

– Generalized Pareto Distribution (GPD)

• Markov chain model

– Joint density

– Bivariate GPD

• Bayesian Inference

• Results for High Bradfield

• Further model considerations
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Background and Motivation: Dependence...

Exceedances are not usually independent. Can decluster
exceedances to remove dependencies, but ...

• Also removes data.

• Parameter estimates are sensitive to filtering scheme.

• Information about the dependence may be important.

• May introduce biases in parameter estimates.
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Background and Motivation: Dependence...

Solutions?

• Make adjustments to standard errors and confidence in-
tervals.

• Explicitly model the dependence (e.g., Coles et al. (1994),
Smith et al. (1997))
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Background and Motivation: Data

• Hourly gust maximum wind speeds (knots).

• Location: High Bradfield (high-altitude site in Pennines).

• 10-year record from 1-Jan-1975 to 31-Dec-1984 (≈ 86 000
observations).
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Background and Motivation: GPD

For X1, X2, . . . a seq. of independent random variables with
common cdf F , the limiting distribution, if it exists,
as u −→∞ of (X − u|X > u) is GPD:

G(y) = 1−
(
1 +

ξ∗y

σ∗

)−1/ξ∗

+
(1)

with z+ = max{z,0}, σ∗ > 0 and ξ∗ are scale and shape
parameters, respectively.
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Background and Motivation: GPD

For X1, X2, . . . a seq. of independent random variables with
common cdf F , the limiting distribution, if it exists,
as u −→∞ of (X − u|X > u) is GPD:

G(y) = 1−
(
1 +

ξ∗y

σ∗

)−1/ξ∗

+
(1)

with z+ = max{z,0}, σ∗ > 0 and ξ∗ are scale and shape
parameters, respectively.

Relating to the GEV (Coles et al., 1994),

σ∗ = σ + ξ(µ− u)

ξ∗ = ξ

λ = 1− exp

{
−

1

N

[
1 + ξ

(
u− µ

σ

)]−1/ξ
}

with N the number of observations per year, and λ the ex-
ceedance rate.
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Background and Motivation: GPD

Nonstationarity: Seasonality is often present with meteoro-
logical data.

• Stratify by month, and fit models to each month sepa-
rately.

• Incorporate seasonality into the model (e.g., Coles et al.
(1994)).
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Background and Motivation: GPD

Nonstationarity: Seasonality is often present with meteoro-
logical data.

• Stratify by month, and fit models to each month sepa-
rately.

• Incorporate seasonality into the model (e.g., Coles et al.
(1994)).

The former approach is taken in this paper, where the inter-
est is in modeling the temporal dependence through a Markov
chain model.
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Markov chain model: Joint density

For independent data, the joint density, f(y1, . . . , yn), can be
factored into the product of the marginal distributions. That
is,

f(y1, . . . , yn) =
n∏

i=1

f(yi)
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Markov chain model: Joint density

For independent data, the joint density, f(y1, . . . , yn), can be
factored into the product of the marginal distributions. That
is,

f(y1, . . . , yn) =
n∏

i=1

f(yi)

A Markov chain implies a lag-one temporal dependence so
that the joint density is slightly more complicated.
Specifically,

f(y1, . . . , yn) =

∏n
i=2 f(yi−1, yi)∏n−1

i=2 f(yi)
(2)
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Markov chain model: Joint density

For example: Take n = 4 so that we have the series: y1, . . . , y4.
Making no assumptions about independence, we have that

f(y1, y2, y3, y4) = f(y1) · f(y2|y1) · f(y3|y1, y2) · f(y4|y1, y2, y3)
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Markov chain model: Joint density

For example: Take n = 4 so that we have the series: y1, . . . , y4.
Making no assumptions about independence, we have that

f(y1, y2, y3, y4) = f(y1) · f(y2|y1) · f(y3|y1, y2) · f(y4|y1, y2, y3)

For a Markov chain, the dependence is only with the previ-
ous time step so that the above reduces to:

f(y1, y2, y3, y4) = f(y1) · f(y2|y1) · f(y3|y2) · f(y4|y3)

Using the Bayes formula, this becomes:

f(y1, y2, y3, y4) = f(y1) ·
f(y1, y2)

f(y1)
·
f(y2, y3)

f(y2)
·
f(y3, y4)

f(y3)

=
f(y1, y2)f(y2, y3)f(y3, y4)

f(y2)f(y3)
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Markov chain model: Joint density

The numerator of (2) can be modeled using the bivariate
extreme-value distribution characterised in sections 3.1 and
3.2 of the paper.

The denominator, which involves only univariate densities,
is modeled with the univariate GPD (1).
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Markov chain model: Bivariate GPD

It can be shown that the bivariate distribution function,
G(x1, x2), for x1 and x2 with standard Fréchet margins is:

G(x1, x2) = exp{−V (x1, x2)}

for certain V (·, ·) (see paper).
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Markov chain model: Bivariate GPD

It can be shown that the bivariate distribution function,
G(x1, x2), for x1 and x2 with standard Fréchet margins is:

G(x1, x2) = exp{−V (x1, x2)}

for certain V (·, ·) (see paper).

One widely used class of families for G is the logistic family,
where

V (x1, x2) =
(
x
−1/α
1 + x

−1/α
2

)α

where x1, x2 > 0 and α ∈ (0,1]. For α = 1, we have
independence, and as α −→ 0, we have complete depen-
dence.
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Bayesian Inference

MLE: Which parameters maximize the (assumed) likelihood
of realising the data that are observed?
Bayesian Estimation:

• Assume data are distributed according to [data|θ].

• Assume a prior distribution, [θ], for the unknown
paramter(s).

• Use Bayes formula to find the posterior distribution,
[θ|data].1

[θ|data] =
[data|θ][θ]

[data]

1Generally the posterior is intractable, but it is often possible to simulate from it based on the posterior and data
likelihood.
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Bayesian Inference

Again, parameters are fit separately for each month, m.

Thresholds, um, are chosen by standard exploratory
methods.

No prior information, so non-informative priors are used.
To ensure positivity, the scale parameters are modeled as
σm = exp(ηm). Specifically,

π(ηm) ∼ N(0,10 000);

π(ξm) ∼ N(0,100);

π(αm) ∼ U(0,1)
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Bayesian Inference

Because the posterior distributions are generally intractable,
samples from their distributions are simulated using the prior
distributions of the previous slide and the likelihoods (data
given the parameters).

Predictions are subsequently obtained through functions of
the estimated posterior distribution. See Eq. (19) of the
paper.
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Results for High Bradfield

• Rapid convergence to apparent stationary parameter dis-
tributions was achieved.

• Good mixing properties.

• Dependence parameter2, αm, in range of 0.3 to 0.45.

• ξ < 0 for all months except June.

• Eq. (20) is set equal to 1/r, and solved for zr to obtain
the r-year return level.

• Note that there are two estimates for the return level. The
predictive estimate accounts for uncertainty in parameter
estimation and future observations.

2From logistic dependence model
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Further model considerations

• Other dependence models besides the logistic to account
for skewness. Nothing Gained

• Higher-order Markov models.

2nd-order model good for

(i) storm length

(ii) duration between storms

No change for return levels
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