

Motivation		
Motivation		

• Severe Weather generally on fine scales.

イロト イロト イヨト イヨト 三日

land Weather/Climate Extremes

2 / 19

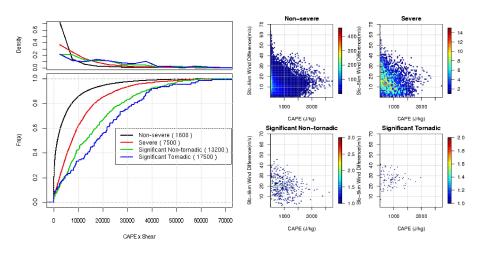
Motivation		
Motivation		

• Severe Weather generally on fine scales.

イロト イロト イヨト イヨト 三日

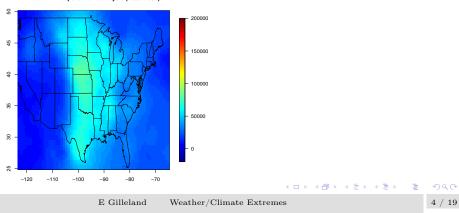
• Climate models on fairly coarse scales.

E Gilleland Weather/Climate Extremes


Motivation		
Motivation		

- Severe Weather generally on fine scales.
- Climate models on fairly coarse scales.
- Interest in gleaning information about severe weather under a changing climate.

E Gilleland Weather/Climate Extremes

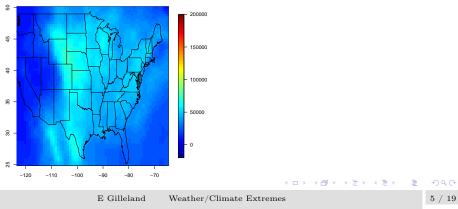

E Gilleland Weather/Climate Extremes 3 / 19

	Measurements		
Measurements Global Reanalysis			

- 42 years available (1958-1999)
- 17,856 grid points (192×94)

Median AM cape*shear reanalysis (1980-1999)

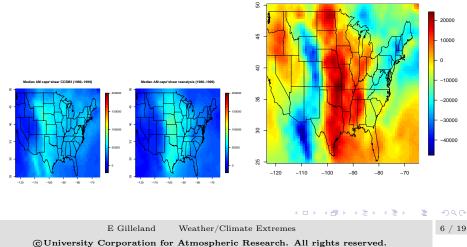
• Resolution $\approx 1.875^{\circ}$ lon, 1.915° lat



	Measurements		
Measurements CCSM3 Climate M	Model Output		

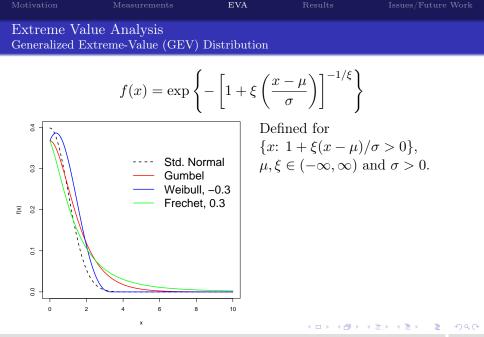
- 20 years (1980-1999)
- 756 grid points (42×18)

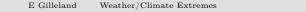
Median AM cape*shear CCSM3 (1980-1999)


• Resolution $\approx 1.4^{o}$ lon, 1.4^{o} lat

- Large discrepancies in "observed" and CCSM3 modeled median AM cape*shear.
- Overall patterns similar.

Median AM CCSM3 – Reanalysis (1980–1999)





- Frequency of high values of cape*shear (Pocernich et al., in prep)
- Intensity of high values of cape*shear
 - Expected return values based on reanalysis fit to GEV.
 - Trends in observed data since 1958.
 - Comparison of Reanalysis and CCSM3 (1980-1999).
 - Comparison of above with CCSM3 future projections.
- Investigate severe weather under changing climate in other ways.
 - Regional models with future climate model initializations.
 - other?

E Gilleland Weather/Climate Extremes

э

8 / 19

	EVA	
Extreme Value Parameter covaria		

Can incorporate covariates into parameters of GEV to account for non-stationarity. For example,

$$\mu(\boldsymbol{x}) = \mu_0 + \sum_{i=1}^m g_i(\boldsymbol{x}) \mu_i$$

$$\ln(\sigma(\boldsymbol{x})) = \sigma_0 + \sum_{j=1}^{\ell} h_j(\boldsymbol{x})\sigma_j$$

$$\xi(\boldsymbol{x}) = \xi_0 + \sum_{k=1}^n f_k(\boldsymbol{x})\xi_k$$

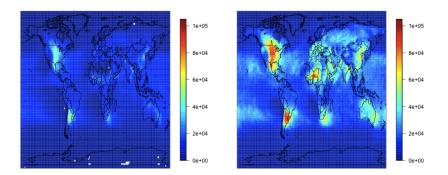
E Gilleland Weather/Climate Extremes

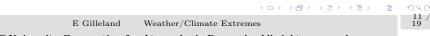
9 / 19

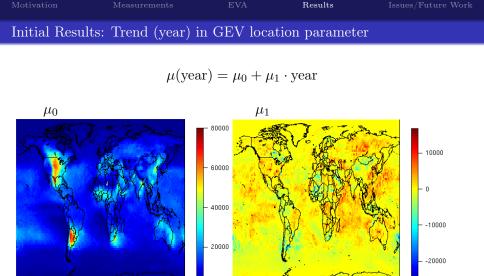
イロン イロン イヨン イヨン 一日

Adding covariate information always increases likelihood, so must test for significance. To compare a model \mathcal{M}_1 with n_1 parameters against a less complex (nested) model \mathcal{M}_0 with n_0 parameters, compare

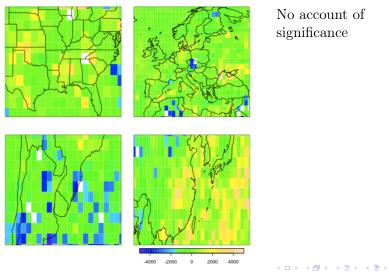
$$D = 2\left\{\ell_1(\mathcal{M}_1) - \ell_0(\mathcal{M}_0)\right\}$$


against the $(1 - \alpha)$ quantile from the $\chi^2_{n_1-n_0}$ distribution. If D is greater, then reject the null hypothesis that \mathcal{M}_0 is the best choice model.


E Gilleland Weather/Climate Extremes

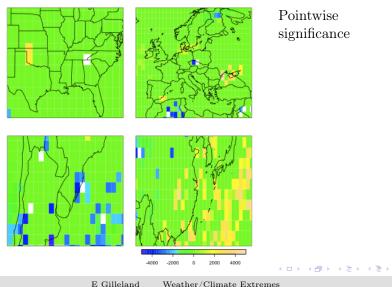

©University Corporation for Atmospheric Research. All rights reserved.

 $\frac{10}{19}$ /



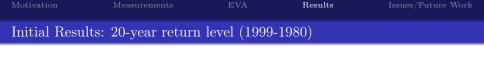
 $\begin{array}{c} < \square \succ < \textcircled{O} \succ < \textcircled{E} \succ & \textcircled{E} \succ & \textcircled{E} \end{array} \end{array}$ E Gilleland Weather/Climate Extremes

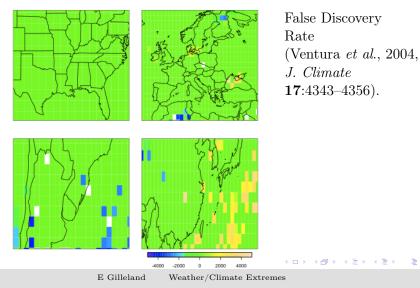
 $\frac{12}{19}$ /


No account of significance

E Gilleland Weather/Climate Extremes

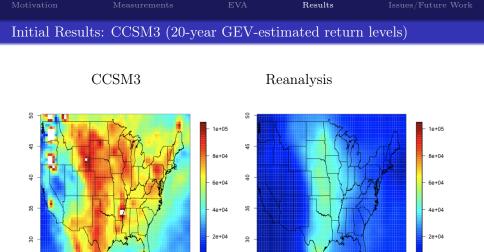
ъ


Pointwise significance


ъ

 $^{14}_{19}$ /

©University Corporation for Atmospheric Research. All rights reserved.


Weather/Climate Extremes

©University Corporation for Atmospheric Research. All rights reserved.

 $\frac{15}{19}$ /

 $\begin{array}{c} < \square \vdash < \textcircled{O} \vdash < \textcircled{E} \vdash < \textcircled{E} \\ \end{array} \\ \\ \mbox{E Gilleland} & \mbox{Weather/Climate Extremes} \end{array}$

52

-120 -110

-100

0e+00

э

 $\frac{16}{19}$ /

-70

-80

©University Corporation for Atmospheric Research. All rights reserved.

0e+00

-70

25

-120

-110 -100 -90 -80

Some traditional verification statistics

MAE	$37,\!600$
ME	$37,\!600$
MSE	$1.8 imes 10^9$
MSE - baseline	$1.5 imes 10^8$
MSE - persistence	$7.3 imes 10^5$
SS - baseline	-10.88

E Gilleland Weather/Climate Extremes

©University Corporation for Atmospheric Research. All rights reserved.

(日) (종) (종) (종) (종) (종)

 $^{17}_{19}$ /

			Issues/Future Work
Issues, futur	e and ongoing wor	:k	

- cape*shear not ideally suited for EVA.
- CCSM3 cape not believable.
- Other large-scale indicators?
- Short record for verification.
- Investigate severe weather for changing climate more directly.
- Many new methods for spatial EVA.
- Employ new methods for spatial forecast verification.

E Gilleland Weather/Climate Extremes

©University Corporation for Atmospheric Research. All rights reserved.

 $\frac{18}{19}$

		Issues/Future Work
That's all		

Questions?

E Gilleland Weather/Climate Extremes

 $\textcircled{\mbox{\sc c}}$ University Corporation for Atmospheric Research. All rights reserved.

 $^{19}_{19}$ /