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User-relevant verification:
Good forecast or Bad forecast?
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User-relevant verification:
Good forecast or Bad forecast?

F OIf I’m a water
manager for this
watershed, it’s a

pretty bad
forecast…
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User-relevant verification:
Good forecast or Bad forecast?

If I’m an aviation traffic strategic planner…
It might be a pretty good forecast

OA B

OF
Flight Route

Different users have different ideas
about what makes a good forecast
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High vs. low resolution

Which rain forecast is better?
Mesoscale model (5 km) 21 Mar 2004

Sydney

Global model (100 km) 21 Mar 2004

Sydney

Observed 24h rain

RMS=13.0 RMS=4.6

From E. Ebert
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High vs. low resolution

Which rain forecast is better?
Mesoscale model (5 km) 21 Mar 2004

Sydney

Global model (100 km) 21 Mar 2004

Sydney

Observed 24h rain

RMS=13.0 RMS=4.6

“Smooth” forecasts generally “Win” according
to traditional verification approaches.

From E. Ebert
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CSI = 0 for first 4;

CSI > 0 for the 5th

Consider forecasts and
observations of some

dichotomous field on a grid:

Some problems with this
approach:

(1) Non-diagnostic – doesn’t tell
us what was wrong with the
forecast – or what was right

(2) Ultra-sensitive to small
errors in simulation of localized
phenomena
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Traditional “Measures”-based approaches
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Spatial verification
techniques aim to:

 account for
uncertainties in timing
and location

 account for field
spatial structure

 provide information
on error in physical
terms

 provide information
that is
 diagnostic
 meaningful to forecast

users

Weather variables defined
over spatial domains have
coherent structure and

features

Spatial forecasts
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 Filter Methods
 Neighborhood verification methods
 Scale decomposition methods

 Motion Methods
 Feature-based methods
 Image deformation

 Other
 Cluster Analysis
 Variograms
 Binary image metrics
 Etc…

Recent research on spatial verification
methods
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Filter Methods

 Also called “fuzzy”
verification

 Upscaling
 put observations

and/or forecast on
coarser grid

 calculate traditional
metrics

Fractions skill score (Roberts 2005; Roberts and Lean 2007)

Ebert (2007; Met Applications) provides a review and synthesis 
of these approaches

Neighborhood verification
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 Errors at different
scales of a single-
band spatial filter
(Fourier, wavelets,…)
 Briggs and Levine, 1997
 Casati et al., 2004

 Removes noise
 Examine how different

scales contribute to
traditional scores

 Does forecast power
spectra match the
observed power
spectra?

Fig. from Briggs and Levine, 1997

Filter Methods
Single-band pass
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Feature-based verification

Error components
 displacement
 volume
 pattern
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Numerous features-based methods
 Composite

approach
(Nachamkin, 2004)

 Contiguous rain
area approach
(CRA; Ebert and
McBride, 2000;
Gallus and others)

Gratuitous photo from Boulder open space

Motion Methods
Feature- or object-based verification
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Motion Methods
Feature- or object-based verification

 Baldwin object-
based approach

 Method for Object-
based Diagnostic
Evaluation (MODE)

 Others…
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Inter-Comparison Project (ICP)

 References
 Background
 Test cases
 Software
 Initial

Results

http://www.ral.ucar.edu/projects/icp/
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The image warp
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The image warp
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The image warp

 Transform forecast field, F, to look as
much like the observed field, O, as
possible.

 Information about forecast performance:
 Traditional score(s), ϴ, of un-deformed field, F.
 Improvement in score, η, of deformed field, F’,

against O.
 Amount of movement necessary to improve ϴ

by η.
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The image warp

 More features
 Transformation can be decomposed into:

 Global affine part
 Non-linear part to capture more local effects

 Relatively fast (2-5 minutes per image pair using
MatLab).

 Confidence Intervals can be calculated for η,
affine and non-linear deformations using
distributional theory (work in progress).
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The image warp

 Deformed image given by
 F’(s)=F(W(s)), s=(x,y) a point on the grid
 W maps coordinates from deformed image, F’, into un-

deformed image F.
 W(s)=Waffine(s) + Wnon-linear(s)

 Many choices exist for W:
 Polynomials

 (e.g. Alexander et al., 1999; Dickinson and Brown, 1996).
 Thin plate splines

 (e.g. Glasbey and Mardia, 2001; Åberg et al., 2005).
 B-splines

 (e.g. Lee et al., 1997).
 Non-parametric methods

 (e.g. Keil and Craig, 2007).
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The image warp

 Let F’ (zero-energy image) have control points, pF’.
 Let F have control points, pF.
 We want to find a warp function such that the pF’

control points are deformed into the pF control
points. W(pF’)= pF

 Once we have found a transformation for the
control points, we can compute warps of the
entire image: F’(s)=F(W(s)).
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The image warp

Select control points, pO, in O.
Introduce log-likelihood to measure dissimilarity

between F’ and O.

log p(O | F, pF, pO) = h(F’, O),

Choice of error likelihood, h, depends on field of
interest.
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The image warp

Must penalize non-physical warps!
Introduce a smoothness prior for the warps
Behavior determined by the control points. Assume

these points are fixed and a priori known, in order
to reduce prior on warping function to p(pF | pO).

p(pF | O, F, pO ) =
log p(O | F, pF , pO)p(pF | pO) =
h(F’, O) + log p(pF | pO) ,

where it is assumed that pF are conditionally independent of
F given pO.
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ICP Test case 1 June 2006

MSE=17,508 9,316

WRF
ARW

(24-h)

Stage
 II



WRF
ARW

(24-h)

Stage
 II

Comparison with MODE (Features-based)

Radius = 15 grid
squares

Threshold =
0.05”
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Comparison with MODE (Features-based)

 Area ratios
(1) 1.3
(2) 1.2
(3) 1.1

 Location errors
(1) Too far West
(2) Too far South
(3) Too far North

 Traditional Scores:
POD = 0.40
FAR = 0.56
CSI = 0.27

1

2

3

WRF ARW-2 Objects with Stage
II Objects overlaid

 All forecast
areas were
somewhat too large
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Nothing more to see here…
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The image warp

 W is a vector-valued function with a
transformation for each coordinate of s.
 W(s)=(Wx(s), Wy(s))

 For TPS, find W that minimizes

(similarly for Wy(s)) keeping W(p0)=p1 for each
control point.
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The image warp

Resulting warp function is

Wx(s)=S’A + UB,

where S is a stacked vector with components
(1, sx, sy),  A is a vector of parameters
describing the affine deformations, U is a
matrix of radial basis functions, and B is a
vector of parameters describing the non-
linear deformations.


