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ABSTRACT OF DISSERTATION

STATISTICAL MODELS FOR QUANTIFYING THE SPATIAL

DISTRIBUTION OF SEASONALLY DERIVED OZONE STANDARDS

The U.S. Environmental Protection Agency’s (EPA) National Ambient Air

Quality Standard (NAAQS) for ground-level ozone is now based on the fourth-

highest daily maximum 8-hour average ozone level (FHDA). Standard geosta-

tistical models may not be appropriate for interpolating such a statistic off of

a network of monitoring sites. The performance of different statistical mod-

els in predicting this standard at locations where monitors are not located is

compared. Special attention is given to two models: a daily model that uses a

spatial autoregression to account for spatial and temporal dependence, and a

seasonal model that assumes the FHDA field is Gaussian and employs spatial

statistical techniques. Based on five seasons of ozone data collected in and

around North Carolina, cross-validation shows a preference to the daily model

over the seasonal model. In addition to the above models, a spatial extreme

value model is also compared to the daily model. Results show that the two

vastly different methods give remarkably similar results.

Eric Gilleland
Statistics Department

Colorado State University
Fort Collins, CO 80523

Spring 2005
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Chapter 1

Introduction

Statistical theory for the analysis of extreme values is well established for

the univariate case, but for the multivariate case, it is still an area of ac-

tive research. Most work on multivariate extremes has been focused on the

maximums, or equivalently, the minimums. The work here is focused on mak-

ing spatial inferences of a fourth-highest order statistic. The motivation for

looking at such a seemingly esoteric statistic comes from a practical applica-

tion; the U.S. Environmental Protection Agency’s (EPA) regulatory standard

for ground-level ozone. The standard states that if the three-year average

fourth-highest daily maximum 8-hour ozone level (FHDA), monitored dur-

ing the “ozone season” from about May through October, exceeds 84 parts

per billion (ppb) for a particular consolidated/metropolitan statistical area

(C/MSA), then the region included within this C/MSA is designated as out

of attainment.
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Three approaches for making spatial inferences of the fourth-highest or-

der statistic are considered. The first, which will be referred to here as the

daily model, uses an autoregression with spatially correlated shocks to sim-

ulate a sample from the fourth-highest multivariate distribution by way of

Monte Carlo simulations. The second approach, referred to here as the sea-

sonal model, assumes that the multivariate distribution for the fourth-highest

order statistic, from a sample of size 184, is approximately multivariate nor-

mal; and standard geostatistical techniques are used to predict the regulatory

standard at locations without monitoring stations. Finally, I will introduce a

new method for modeling multivariate exceedances over the threshold using

the usual univariate generalized Pareto distribution while including a spatial

component that links the distribution over space.

Chapter 2 provides some background on the U.S. EPA’s air quality stan-

dard for ground level ozone, giving motivation to the work set out here. Chap-

ter 1 will then provide a literature review of previous relevant work including:

spatial (geostatistical) models, thin plate splines, first order autoregressive

time series models, spatiotemporal models, extreme value theory, previous

findings about ozone data, and finally a section on work relating to the new 8-

hour ozone standard. Chapter 4 introduces the daily and seasonal models, and

compares results of predicting fourth-highest values spatially. The following

chapter considers a different analysis based on extreme value theory.



Chapter 2

Motivation

In this chapter I give details about the motivation for looking at the multivari-

ate distribution of the fourth-highest order statistic. Section 2.1 introduces the

U.S. EPA’s role in trying to improve air quality. Section 2.2 gives health and

environmental motivation of the importance of reducing ground-level ozone

pollution. Section 2.3 discusses how the monitoring and regulation program

works. Section 2.4 discusses the new regulatory standard for ground-level

ozone, and finally, section 2.5 discusses the specific statistical problem arising

from this new regulatory standard.

2.1 Ground-level Ozone

As required by the Clean Air Act (CAA) of 1971, the EPA has established

standards, known as the National Ambient Air Quality Standards (NAAQS),

3
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for six principal air pollutants (also referred to as criteria pollutants): carbon

monoxide (CO), lead (Pb), nitrogen dioxide (NO2), ground-level ozone (O3),

particulate matter (PM) and sulfur dioxide (SO2): to monitor and control their

ambient concentrations. Of these six, ground-level ozone has a new standard

based on an order statistic that will be explored in this thesis.

Although ground-level ozone (O3) is the primary constituent of smog, it is

not directly emitted into the atmosphere; rather it is formed when nitrogen

oxides (NOx) and volatile organic compounds (VOCs) react in the presence of

sunlight. This catalysis creates an ozone pollution problem particularly in the

hot summer months. VOCs are emitted from a variety of sources including

cars, factories, refineries, chemical plants, consumer products and many other

industrial sources. NOx are emitted from motor vehicles, power plants and

other sources of internal combustion. Most surface ozone is locally produced

from these precursors through photochemical processes. A typical diurnal

pattern of surface ozone concentration during the ozone season consists of a

mid-afternoon maximum, followed by a decay to an early morning minimum

and then a rise through the late morning and the middle part of the day [12].

O3 and its precursor pollutants can easily be transported hundreds of miles

from pollution sources. Subsequently, changing weather patterns can attribute

much variability in yearly ozone concentrations in a given region [44]. One

context for this thesis research is the interest in quantifying ozone pollution

on spatial scales beyond the size of an urban area.
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2.2 Health and Environmental Effects of Ground-

level Ozone

Exposure to ambient ozone for both short (1-3 hours) and long (6-8 hours)

amounts of time has been linked to various negative health effects including

increased hospital admissions and respiratory problems. Specifically, it can

make people more susceptible to respiratory infection, result in lung inflam-

mation, cause a decrease in lung function, increase respiratory symptoms such

as chest pain and cough as well as aggravate any pre-existing respiratory dis-

eases such as asthma or chronic lung disease [44].

These problems typically occur for people who are active outdoors, and is

especially a concern for children because it puts them at particularly high risk

during the summer months when ozone levels are at their highest and children

are more likely to be playing outside. Longer-term exposure to moderate levels

of ozone can cause irreversible changes in the lungs, leading to premature aging

of the lungs, and worsen or cause chronic respiratory illnesses [44].

Vegetation and ecosystems are also affected by ground-level ozone leading

to reductions in agriculture and commercial forest yields, reduced growth and

survivability of tree seedlings and increased plant susceptibility to disease,

pests and other environmental stresses. Over a long period of time, this can

have a significant impact on ecosystems and habitats for wildlife, particularly

on endangered species [44].



6

2.3 Monitoring and Regulating Ground-level

Ozone

The EPA is involved in both monitoring and regulating emissions of the six cri-

teria pollutants. In part, this means setting up monitoring stations and using

the observations obtained from them to apply the NAAQS for each pollutant.

Another function of the EPA in this context involves investigating ways of re-

ducing emissions by studying where and how the emissions are made, and how

they are transported, and either react or dissipate. Initially, regions referred

to as consolidated/metropolitan statistical areas (C/MSA)–in which monitor-

ing and regulation is to take place–are defined by the Office of Management

and Budget. States and tribes provide the EPA with their attainment/non-

attainment designation recommendations for each C/MSA area, and the EPA

can either approve or disapprove them, and then promulgate the designation.

Designations are based on monitoring data as well as data indicating whether

an area (possibly outside a C/MSA) contributes to a violation. As part of this

process, the EPA may consider various factors, such as emissions, traffic and

commuting patterns, population density, and expected growth. In particular,

if an area is not part of a C/MSA, it may still be found to be out of attainment

of the NAAQS if it is believed to contribute to the ozone problem of a C/MSA

region found to be out of attainment. However, there is currently no means

for the EPA to provide the public with ozone coverage levels for such an area.
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Once a C/MSA is decided upon, monitors are placed in the region, and any

C/MSA found to be out of attainment must create an implementation plan,

called a State Implementation Plan (SIP), with the intent of reducing ozone

pollution to meet the standard.

2.3.1 Air Quality Monitoring

The EPA’s ambient air quality monitoring program is carried out by local,

state and national agencies. The program consists of three major categories of

monitoring networks: State and Local Air Monitoring Stations (SLAMS), Na-

tional Air Monitoring Stations (NAMS) and Special Purpose Monitoring Sta-

tions (SPMS): that measure the criteria pollutants, as well as a fourth network

of Photochemical Assessment Monitoring Stations (PAMS) that measure ozone

precursors. The SLAMS network consists of roughly 4,000 monitoring stations

whose size and placement is largely determined by state and local air pollu-

tion control agencies to meet their respective SIP requirements. The 1,000-plus

NAMS are a subset of the SLAMS network and are key sites emphasizing ar-

eas of maximum concentrations and high population density. The SPMS are

used for special studies by state and local agencies to support SIPs and other

air program activities. These monitors are not permanently established and

may be easily changed as needed. As mandated in a 1990 amendment to the

CAA, PAMS networks are required in each ozone non-attainment area that

is designated serious, severe or extreme. Here, data from a network of 513
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Figure 2.1: 513 ozone monitoring stations in the eastern United States. The
rectangle in North Carolina represents a grid area in the Research Triangle
Park (RTP) in which interpolations will be made for comparison of the daily
and seasonal models for the subset of 72 stations (circled) around North Car-
olina.

SLAMS stations in the eastern United States (Figure 2.1) are analyzed, with

special attention given to a 72 station subset in and around North Carolina.

These data are posted at http://www.cgd.ucar.edu/stats/Data/O3.shtml

along with R programs for their analysis.

Because of the high cost of operating these stations, ozone monitoring

occurs only during the hotter months when weather conditions are most con-

ducive to forming ozone. This “ozone season” generally goes from about April

to October. A great deal of care is placed in the design of the network in order
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to optimize, in some way, the results with as few monitoring stations as possi-

ble (see Nychka et. al [32]). Strict criteria have been established by the EPA

regarding the operation of these monitoring networks including calibrations,

independent audits, data validation and a rigorous quality assurance program

(see Davis et al. [7]).

The instruments used are either chemiluminescence analyzers or ultraviolet

photometers and the brand and model must be approved before use. The

measurements can be taken continuously over time, but the output is usually

sampled at short time intervals and, as is the case for ozone, these discrete

measurements are averaged over blocks of time in each day.

Placement of monitors is typically determined by physical and political

means. For example, Guttorp et al. [17] note that local NOx sources, such

as power plants, cement plants and traffic can hinder the ability of monitors

to accurately measure ozone because its representativeness is destroyed by

such sources or sinks that dominate the ozone measurements. Additionally,

because ozone can be transported easily by wind, monitors placed downwind

of an ozone source will perhaps obtain a better measurement of actual ozone

presence than those placed upwind.
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2.3.2 Numerical Models for Simulating and Predicting

Air Quality

The primary tool used by the EPA to investigate solutions to pollution prob-

lems is by numerical models based on physical and chemical principles. The

Community Multi-scale Air Quality (CMAQ) modeling system has been de-

signed to approach air quality as a whole by including advanced capabilities for

modeling multiple air quality issues. Tropospheric (ground-level) ozone, fine

particles, toxics, acid deposition and visibility degradation are all incorpo-

rated into the CMAQ. Additionally, CMAQ was designed to have multi-scale

capabilities negating the need for separate urban and regional scale air qual-

ity modeling. Target grid resolutions and domain sizes for CMAQ range both

spatially and temporally over several orders of magnitude allowing simulations

to be performed to evaluate long term pollutant climatologies as well as short

term transport from localized sources [43].

Implementation of multi-scale capabilities in CMAQ requires that several

issues be resolved; such as scalable atmospheric dynamics and generalized co-

ordinates depending on the desired model resolution. One example of a differ-

ence in assumptions for urban and regional scales is in hydrostatic conditions,

which may be assumed to be balanced over vertical pressure and gravitational

force with no net vertical acceleration for large scales, but not for small scales.

Thus, CMAQ’s governing equations are expressed in a generalized coordinate
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system, ensuring consistency between CMAQ and the meteorological modeling

system. The CMAQ modeling system contains three types of modeling compo-

nents: a meteorological modeling system for describing atmospheric states and

motions, emission models for man-made and natural emissions injected into

the atmosphere, and a chemistry-transport modeling system for simulating the

chemical reactions and fate [43].

2.4 The NAAQS for Ground-level Ozone

The NAAQS for ozone from 1978 until 1997 was based on daily 1-hour blocks

of time where the 1-hour maximum daily ozone measurement among the net-

work of stations monitoring a given area could not exceed 120 ppb more than

once per year on average. It was found that there were numerous cases where

regions were in attainment of this standard, but out of attainment of an-

other proposed standard based on 8-hour averages; the longer 8-hour averages

protect against exposure instead of just concentration, and it is the level of

exposure that is of primary concern for health and the environment (Lefohn

and Altshuller [26]). In 1997, the EPA established the 8-hour O3 standard

to protect against longer exposure periods, and the level of the NAAQS for

ozone is now 84 ppb, with respect to the fourth-highest daily maximum 8-hour

average (FHDA) of an ozone season averaged over three years. To break this

down for each day, all possible 8-hour blocks of time are considered, and an
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average ozone concentration for each block is taken. The maximum of each of

these averages is then recorded for that day; for day d call this value yd. There

are 184 days in an ozone season, giving measurements y1, . . . , y184 from a par-

ticular station. Let y[k] denote the k-th largest order statistic, for this ozone

season at this station. Let y
[4]
1 , y

[4]
2 and y

[4]
3 be the FHDA for three consecutive

seasons, and a C/MSA region is in compliance if the average 1
3

∑3
i=1 y

[4]
i is less

than 84 ppb. Note that if more than one station exists in a region, then the

highest value from all stations in the region is used. Regions not included in

the C/MSA can still be designated out of attainment by the U.S. EPA if it is

determined that the region is contributing to a C/MSA being out of attain-

ment. In this work, we take the perspective that air quality on an annual basis

is of interest, and rather than aggregating over three years, we consider the

FHDA for each year individually.

2.5 The Problem

Currently, the EPA does not consider a spatial analysis of the monitoring data

for regulatory purposes. Figure 2.2 shows the county boundaries for North

Carolina along with ozone monitoring station locations. Clearly, there are

many counties that do not have any monitoring stations, and while a region

may be larger than a county, it is reasonable to think of the regions as counties

in order to glean an idea as to how many regions are not monitored. Figure 2.1
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Figure 2.2: County boundaries (dashed) in and around North Carolina with
ozone monitoring locations. Numbers are observed fourth-highest daily maxi-
mum 8-hour average ozone (FHDA) in parts per billion (ppb) for 1997. Also
shown is an area (rectangular box) around the Research Triangle Park (RTP)
in North Carolina, where spatial prediction will be compared in chapter 4.

is the study region analyzed in chapter 4. The rectangle shows the boundaries

of a gridded region in the Research Triangle Park (RTP) in North Carolina to

be used for testing the predictive performance of various models.
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Building spatial statistical models for the daily ozone field is straight for-

ward, but the extension to the fourth-highest measurement is difficult because

both the covariance and the distribution for the FHDA standard are unknown.

Some strategies to sample from the FHDA distribution given the data are:

• Build a space-time model for the daily ozone data and simulate several

seasons from it. The fourth-highest value from each season can then be

used as an approximate sample from the FHDA distribution.

• Approximate the FHDA distribution by a normal distribution and use

geostatistical tools to predict FHDA onto the gridded region.

• Extend methods from extreme value theory (see section 3.2) to approx-

imate the FHDA distribution.

Based on this work, it is also of interest to look at the probabilities of

exceeding a threshold at a location, x, not located inside a C/MSA.



Chapter 3

Literature Review

This literature review will begin with a review of space-time modeling in sec-

tion 3.1. This review will first explore spatial models and associated topics in

sections 3.1.1 through 3.1.4, followed by a brief discussion of first order autore-

gressive models in section 3.1.5. Section 3.1.6 will then give a general overview

of space-time models, with discussion on separable and non-separable space-

time covariance functions in sections 3.1.8 and 3.1.9. Section 3.2 discusses

theoretical results from extreme value theory. Section 3.4 discusses some pre-

vious work on ozone modeling with special emphasis on work related to the

new 8-hour standard.

15
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3.1 Space-Time Models

Space-time models, or spatiotemporal models, model phenomena that, as the

name suggests, have both spatial and temporal components. Statistical models

for time series have been well explored. Spatial modeling still has much room

for new research particularly in the area of non-stationary covariance modeling.

Spatiotemporal statistical models usually try to combine methods from each

of these two fields. The emphasis here will be on the spatial component, but

will involve a temporal component as well.

3.1.1 Spatial Models

Spatial modeling is a broad term referring to any analysis of data that are

spatially correlated. In the case of analyzing ground-level ozone, where the

monitor locations are decided upon by physical and political means, best lin-

ear unbiased prediction (BLUP), usually called kriging, is generally used for

predicting values at unobserved locations. The simplest form of kriging is

called simple kriging. For some finite domain D in space, the set-up is as

follows.

Let Z(s) be a spatial process with

E(Z(s)) = 0

for all s ∈ D and

Cov(Z(x), Z(y)) = C(x,y) (3.1)
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Then, for n locations, x1, . . . ,xn, and a fixed location, say x0, it is desired

to find the “best” linear predictor of Z(x0). To do this, it is necessary to seek

weights, w′ = w1, . . . , wn, such that

Ẑ(x0) = w1Z(x1) + · · ·+ wnZ(xn) = w′Z (3.2)

(where Z = Z(x1), . . . , Z(xn)) minimizes the mean squared error of prediction.

Namely,

E(Z(x0)− Ẑ(x0))
2 = E(Z(x0)−w′Z)2 (3.3)

The right hand side of (3.3) is

E(Z2(x0))− 2w′E(Z(x0)Z) + w′Kw (3.4)

where K = E(ZZ′) = C(x,y) from (3.1).

Minimizing (3.4) with respect to w, E(Z(x0)Z) = Kw or

w = K−1E(Z(x0)Z)

Furthermore, we have that E(Z(x0)Z) = (C(x0,x1), . . . , C(x0,xn))
′, which

shall be denoted here by c′(x0).

Thus the best linear predictor of Z(x0) is given by

Ẑ(x0) = w′Z = c′(x0)K
−1Z

Rewriting (3.3), the mean squared prediction error (MPSE) is given by

E(Z(x0)− Ẑ(x0))
2 = C(x0,x0)− c′(x0)K

−1c(x0)
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A more general case of model (3.2); often called universal kriging; allows

for a trend function model with spatially correlated noise. That is,

Z(x) =
p∑
i=0

fi(x)βi + ε(x) (3.5)

where E(ε(x)) = 0 for all x and Cov(ε(x), ε(y)) = C(x,y) is assumed known.

Again, it is desired to find the “best” linear unbiased estimate of Z(x0) for

a new location, x0, which again involves minimizing the mean squared error,

E(Z(x0)− Ẑ(x0))
2, subject to the constraint

E(Ẑ(x0)) = E(Z(x0)) =
p∑
i=0

fi(x0)βi (3.6)

Perhaps the simplest method for finding the solution to this problem is to

compute the generalized least squares (GLS) estimate of β, yielding

β̂GLS = (F ′K−1F )−1F ′K−1Z

where F and K are the matrices [fi(xj)] with i = 1, . . . , p, j = 1, . . . , n and

[C(xk,xl)]
n
k,l=1.

Once these parameters have been estimated, simple kriging can be per-

formed on the residuals to obtain estimates of the ε terms from (3.5). The

mean squared prediction error is given by

C(x0,x0)− c′(x0)K
−1c(x0)

+(f(x0)− F ′K−1c(x0))
′(F ′K−1F )−1(f(x0)− F ′K−1c(x0))



19

where the first two terms together are the prediction error variance in spatially

correlated noise and the last term is the prediction error variance from the

trend.

One major difficulty in fitting a spatial model is in finding an appropri-

ate covariance function, C(x,y). The general practice is to plot the empiri-

cal correlations or variogram–depending on whether or not replicated data is

available–and then decide on a family of functions that seems appropriate. Fi-

nally, a function is fit from this family using nonlinear least squares estimators

or other means.

Many families of covariance functions have been proposed for spatial mod-

els. For now, we will concentrate on covariances that are isotropic and sta-

tionary. Some of the more popular ones include the exponential, Gaussian,

spherical and Matérn.

The exponential, which is actually a special case of the Matérn family, has

the form

C(|h|) =


σ2, 0 ≤ h ≤ ε

σ2(1− α)e−
h
θ , h > ε.

(3.7)

where σ2 is the standard deviation at distance h = 0, θ is the range parameter

(range=3θ), α is the proportion of nugget effect and the nugget effect is σ2α

(see Reich and Davis [35]).

The Gaussian model is a limiting case of the Matérn family, and has the
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form

C(|h|) =


σ2, 0 ≤ h ≤ ε

σ2(1− α)e−(h
θ
)2 , h > ε.

(3.8)

where the parameters are as in covariance 3.7 except the range is now 2θ (see

Reich and Davis [35]).

As described in Stein [42], covariance (3.8), without a nugget, is infinitely

differentiable. Subsequently, all moments of its corresponding spectral density

(see section 3.1.7), f(ω) = 1
2
σ2(1 − α)(π 1

θ2
)1/2e−(θω)2/4, are finite so that the

field Z has mean square derivatives of all orders; see section 3.1.3 for more

on mean square derivatives. A stronger result is that Z(s) can be predicted

perfectly for all s based on observing Z(s′) for all s′ ∈ (−ε, 0] for any ε > 0.

This property is not generally realistic for modeling physical processes.

The Matérn covariance has perhaps become the most popular choice of co-

variances because of its flexibility in that it covers a wide variety of covariance

forms. For example, the above exponential and Gaussian covariances.

C(|h|) =
σ

2ν−1Γ(ν)

(
2ν1/2|h|

ρ

)ν
Kν

(
2ν1/2|h|

ρ

)
(3.9)

where Kν is a modified Bessel function and ν represents the smoothness, σ

the variance of the spatial field (also referred to as the sill) and ρ is the range.

The spectral density (section 3.1.7) for the Matérn covariance (3.9) is of

the form f(ω) = σ(α2 + ω2)−ν−1/2 for ν > 0, σ > 0 and α = 2ν1/2

ρ
> 0,

(see Stein [42]). The larger the value of ν, the smoother Z because Z is m

times mean square differentiable (see section 3.1.3) if and only if ν > m, since
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∫∞
−∞ ω2mf(ω)dω <∞ if and only if ν > m (Stein [42]).

3.1.2 Spatial Stationarity and Isotropy

A common simplifying assumption in spatial analyses is to assume that the

probabilistic structure of the field is homogeneous across the spatial domain,

D = <d. Two types of stationarity are used: strict stationarity and weak

stationarity. Most of the time, weak stationarity is assumed, and here this

type of stationarity will be referred to simply as stationarity. A spatial field is

strictly stationary if for all finite n, x1, . . . ,xn ∈ D, h ∈ D and c1, . . . , cn ∈ <,

Pr{Z(x1 + h) ≤ c1, . . . , Z(xn + h) ≤ cn} = Pr{Z(x1) ≤ c1, . . . , Z(xn) ≤ cn}.

See, for example, Stein [42], Cressie [4], or Reich and Davis [35].

Weak stationarity is similar to strict stationarity, but instead of requiring

the entire distribution to be the same regardless of location, weak stationarity

simply makes requirements on the first two moments. Specifically, a process

is weakly stationary if

• E{Z(x)} = µ (i.e., constant mean)

• E{Z(x)Z(y)} <∞ for all x,y ∈ D

• Cov{Z(x), Z(y)} = K(x− y) for all x,y ∈ D

The function, K, is referred to as the autocovariance function for the spatial

field, Z. Strength of association between random variables is better described
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using the autocorrelation function, C(x) = K(x)/K(0); assuming K(0) > 0

(Stein [42]). Clearly, a field that is strictly stationary is also weakly stationary,

assuming finite second moments.

While stationarity simplifies spatial analyses by assuming invariance under

the translation group of transformations of the coordinates, it is also useful to

consider invariance under rotations and reflections. That is, to assume that

there is no reason to distinguish from one direction to another for Z. Again,

it is possible to consider strict isotropy and weak isotropy. Stein [42] defines

strict isotropy in the following way. A random field is strictly isotropic if, for

any orthogonal d× d matrix Φ and any h ∈ D,

Pr{Z(Φx1+h) ≤ c1, . . . , Z(Φxn+h) ≤ cn} = Pr{Z(x1) ≤ c1, . . . , Z(xn) ≤ cn}

for all finite n, x1, . . . ,xn ∈ D and c1, . . . , cn ∈ <.

A random field is weakly isotropic if E{Z(x)} = m, a constant, and a

function K on [0,∞) such that Cov{Z(x), Z(y)} = K(‖x− y‖) for all x,y ∈

D. It is also may be possible to transform the coordinates of a spatial field

so that the field is isotropic on the new coordinates. This form of isotropy is

called geometric isotropy. Formally, Z is geometric isotropic if there exists an

invertible matrix V such that Z(Vx) is isotropic (Stein [42]).

For Z weakly stationary onD, the autocovariance function, K, must satisfy

the following properties.

K(0) ≥ 0
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K(x) = K(−x)

|K(x)| ≤ K(0)

Of course, the autocovariance function must be positive definite. Some

useful properties of positive definite functions include the following.

1. If K1 and K2 are positive definite, then, for all a1, a2 ≥ 0, a1K1 + a2K2

is positive definite.

2. If K1, K2, . . . are positive definite, and limn−→∞Kn(x) = K(x) for all

x ∈ D, then K is positive definite.

3. If K1 and K2 are positive definite, then K(x) = K1(x)K2(x) is positive

definite.

Property 1 is easily shown as follows.

n∑
j,k

cjck{a1K1 + a2K2} =

n∑
j,k

cjcka1K1 +
n∑
j,k

cjcka2K2 ≥ 0.

Property 2 is also easy to show as follows.

n∑
j,k

cjckK(x) =
n∑
j,k

cjck lim
n−→∞

Kn(x) =

lim
n−→∞

n∑
j,k

cjckKn(x) ≥ 0

If Kθ is a positive definite autocovariance function on D for all θ ∈ <

and is continuous in θ for all x, and µ is a positive finite measure on < with

∫
<Kθ(0)µ(dθ) <∞, then

∫
<Kθ(x)µ(dθ) is positive definite.
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3.1.3 Mean Square Continuity and Differentiability

Because there is no simple relationship between the autocovariance function

of a random field and the smoothness of its realizations, it is useful to instead

relate the autocovariance function to mean square properties of a random field.

Specifically, mean square continuity and mean square differentiability.

Definition 3.1.1: Z(·) is mean square continuous at x if E(Z(y)−Z(x))2 −→

0 as y −→ x.

A covariance function, K, is continuous everywhere if and only if K is

continuous at zero. Specifically,

|K(x)−K(y)| = |Cov(Z(x), Z(0))−Cov(Z(y), Z(0))| = |Cov(Z(x)−Z(y), Z(0))|

≤ [var(Z(x)− Z(y))var(Z(0))]1/2 (Cauchy-Schwartz inequality)

= K1/2(0)(2K(0)− 2K(x− y))1/2 −→ 0 as x −→ y and subsequently

|K(x)−K(y)| = |Cov(Z(x), Z(0))− Cov(Z(y), Z(0))| −→ 0.

Definition 3.1.2: Z(·) is mean square differentiable if for all x

Zh(x) =
Z(x + h)− Z(x)

h

converges in mean square as h −→ 0. Call the limiting process Z ′(x).

3.1.4 Thin Plate Splines

Thin plate splines were introduced to statistical data analysis in the early

1980s, and are used frequently here. Green and Silverman [16] provide a
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good review of thin plate splines. Hastie and Tibshirani [19] also give a good

discussion of smoothers generally with some attention to the thin plate spline

smoother.

The general model for a thin plate spline is given by

Y = f(X) + ε (3.10)

where f is a d-dimensional surface and ε are zero-mean uncorrelated random

errors with variances σ2W−1 with W a weight matrix.

The estimator of f(X) in (3.10) minimizes the penalized weighted residual

sum of squares

1

n

∑
i

(Yi − f(xi))
2wi + λJm(f)

where again wi are weights, λ > 0 is a parameter controlling the amount of

smoothing and Jm(f) is a roughness penalty based on m-th order derivatives.

Larger values of λ yield smoother surfaces for the spatial field. Values of λ

near zero produce rougher surfaces, and the estimate interpolates the data.

For one dimension, d = 1, and m = 2, this becomes the usual cubic spline

problem. In this case, a cubic polynomial is fit to interval pieces joined by

knots. The requirement at these knots is that f and its first and second

derivatives are continuous at each knot and subsequently over the entire in-

terval.

As delineated by Green and Silverman [16], desirable properties for Jm

include
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• Jm measures rapid variation in f and departure from local linearity or

flatness.

• Translation or rotation of the coordinates (in <2) does not affect the

value of Jm(f).

• Jm ≥ 0 for all f .

• The problem of finding the surface f that minimizes Jm(f) subject to

some constraints is a tractable one.

To satisfy these properties, the roughness is defined to be the integral of

the squared m-th order derivatives of f . For example, for d = 2 and m = 2

and the spatial locations, x, represented as (x1, x2), the roughness penalty,

Jm(f), is given by

Jm(f) =
∫ ∫

<2{( δ
2f
δx2

1
)2 + 2( δf

δx1δx2
)2 + ( δ

2f
δx2

2
)2}dx1dx2

3.1.5 First Order Autoregressive Time Series Model

Similar to the topics discussed above, time series have been studied relatively

thoroughly. I discuss some basic properties of time series processes here with

special emphasis on the first order autoregressive process because of its role

in the daily model approach of chapter 4 of this manuscript. Brockwell and

Davis [2] give a very thorough treatment of time series processes. Time series

are similar to spatial processes in many ways. The primary difference, of
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course, is that a time series implies a natural ordering that does not readily

make sense for spatial processes. Analogous to spatial processes, temporal

processes have definitions for both strict and weak stationarity. In the time

series context, the random time series Z(t) is said to be strictly stationary if

the joint distributions of (Z(t1), . . . , Z(tM))′ and (Z(t1+τ), . . . , Z(tM+τ))′ are

the same for all positive integers M and all integers, τ . Again, it is common

practice to refer to weak (or second order) stationarity simply as stationarity,

which is defined as follows. Given a time series, Z(t) with t an integer, weak

stationarity occurs when all of the following are satisfied.

• E|Z(t)|2 <∞ for all integers t

• EZ(t) = m for all integers t

• Cov(Z(tr), Z(ts)) = Cov(Z(tr + τ), Z(ts + τ)) for all integers r, s and t.

Also analogous to spatial processes, for stationary time series there is an

autocovariance function. For the time series {Z(t)}, this is defined to be

γZ(h) = Cov(Z(t+ h), Z(t))

with the autocorrelation function, ψZ(h) = γZ(h)
γZ(0)

.

A first order autoregressive process, or AR(1) process, for a time series

Z(t) is given by the following.

Z(t) = ρZ(t− 1) + ε(t), (3.11)

where ε(t) ∼ N(0, σ2), |ρ| < 1 and ε(t) is independent over time.
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Re-writing (3.11) as the infinite sum,

Z(t) =
∞∑
k=0

ρkε(t− k), (3.12)

makes it easy to see that E{Z(t)} = 0, γZ(h) = ρhγZ(0), and ψZ(h) = ρ|h| for

h = 0,±1, . . .. Additionally, Cov(Z(t), ε(t)) = σ2 and γZ(0) = σ2

1−ρ2 so that

γZ(h) = ρh σ2

1−ρ2 for h ≥ 0. Finally, the solution (3.12) is the unique stationary

solution to (3.11).

3.1.6 General Framework for Space-Time Models

Both space and time processes are involved with the ozone data, and the pre-

vious sections have discussed these processes separately. It is also of interest

to consider space-time, or spatiotemporal, processes. Kyriakidis and Jour-

nel (1999) [24] provide a good review of geostatistical space-time models, and

Cressie [4] also goes into some detail about spatiotemporal modeling. The

analyses here considers only a first order autoregressive model with spatially

correlated shocks because the interest is in predicting an order statistic spa-

tially (not temporally), but it is worth covering a few topics related to these

models.

First, consider finite domains D in space and T in time, with D ⊆ <d.

Z(u, t) with u ⊆ D and t ⊆ T is a spatiotemporal random variable that

can take a series of realizations at any location in space and instant in time
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according to a probability distribution,

F (u, t; z) = Pr(Z(u, t) ≤ z) for all z, (u, t) ∈ D × T

A spatiotemporal random function {Z(u, t), (u, t) ∈ D × T} is defined to

be a set of typically dependent random variables, Z(u, t), indexed by location

in space and instant in time.

Consider N points in D×T where {Z(u1, t1), . . . , Z(uN , tN)} has cumula-

tive distribution function

F (u1, t1, . . . ,uN , tM ; z11, . . . , zNM) =

Pr(Z(u1, t1) ≤ z11, . . . , Z(uN , tM) ≤ zNM).

A statistical analysis generally attempts to find the optimal prediction of

an unobserved part of the space-time process. Assuming that the process has

finite variance and the mean and covariance of the process at two spatial points

and two different time points exist, the simple kriging predictor is the linear

combination

Z∗(u0, t0) = µ(u0, t0) +
k∑
i=1

ai(Z(ui, ti)− µ(ui, ti))

of the observations that minimize the mean squared prediction error (MPSE) [5],

[14]. The MPSE is given by the simple kriging predictor [5]:

Z∗(u0, t0) = m(u0, t0) + c(u0, t0)
′Σ−1(Z− µ),
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where Σ ≡ Cov(Z(u, t)), c(u0, t0)
′ ≡ Cov(Z(u0, t0), Z(u, t)) and µ ≡ EZ(u, t).

The corresponding MPSE is then given by c(u0, t0)
′Σ−1c(u0, t0).

Analogous to the definitions in sections 3.1.2 and 3.1.5 for strict and second

order stationarity for temporal and spatial processes, the random function

Z(u, t) is said to be strictly stationary within D× T if its spatiotemporal law

is invariant by translation (h, τ) ∈ D×T . This implies that any two vectors of

random variables (Z(u1, t1), . . . , Z(uN , tM))′ and (Z(u1+h, t1+τ), . . . , Z(uN+

h, tM + τ))′ have the same multivariate cdf regardless of the translated vector

(h, τ) ∈ D × T . Symbolically, we have that F (u1, t1, . . . ,uN , tM) = F (u1 +

h, t1 + τ, . . . ,uN + h, tM + τ) for all u1, t1, . . . ,uN , tM and (h, τ) ∈ D × T .

The random function, Z(u, t), has second order stationarity, which will

subsequently be referred to simply as stationarity, if

• EZ(u, t) = m, for all (u, t) ∈ D × T and

• E[Z(u, t)−m][Z(u′, t′)−m] = CZ(h, τ), where CZ(·, ·) is the space-

time covariance function. In words, Cov(Z(u, t)) = CZ(u, t;u′, t′) de-

pends only on the spatial and temporal lags h = u− u′ and τ = t− t′.

3.1.7 Spectral Methods

It is often useful to use spectral methods when studying the autocovariance

structure of weakly stationary random processes (spatial or temporal), {Z(u)}.

Essentially, the spectral representation of a stationary random process de-
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composes {Z(u)} into a sum of sinusoidal components with uncorrelated ran-

dom coefficients. Brockwell and Davis [2] and Stein [42] both provide a good

overview of such representations.

Definition 3.1.3: Z is a complex-valued random field if

Z(x) = U(x) + iV (x)

where U and V are real-valued random fields.

If (U(x), V (x))T is jointly weakly stationary (i.e., U and V are each weakly

stationary and Cov(U(x), V (y)) depends only on the distance between x and

y), then Z is weakly stationary. Here,

K(y) = Cov(Z(x + y), Z(x)) =

E{Z(x + y)Z(x)} (provided EZ(x) = 0) =

E{(U(x + y) + iV (x + y))(U(x)− iV (x))} =

= KU(y) +KV (y) + i{Cov(V (x + y), U(x))− Cov(U(x + y), V (x))},

Some properties of K(y) are as follows.

1. K(0) ≥ 0

2. K(−y) = K(y)

3. K(·) is nonnegative definite (i.e.,
∑n
j,k=1 cjckK(xi − xj) ≥ 0).
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Next, let Z1, . . . , Zn be mean zero uncorrelated complex-valued random

variables, and consider

Z(x) =
n∑
k=1

Zke
iωT

k x.

Here, ω1, . . . , ωn are fixed frequencies in <d. Clearly, EZ(x) = 0 and

E(Z(x + y)Z(x)) =
∑n
k=1

∑n
j=1 e

iωT
j (x+y)e−iω

T
k xE(ZjZk)

=
n∑
k=1

eiω
T
k yfk, (3.13)

where fk = E|Zk|2. Because (3.13) depends only on y, Z(·) is weakly station-

ary with autocovariance function K(y) =
∑n
k=1 e

iωT
k yfk.

From the above representation, it is possible to derive the following repre-

sentations for K(y) and Z(x).

K(y) =
∫
<d
eiω

T ydF (ω), (3.14)

where F (·) is a distribution function that puts mass fi at frequency ωi, i =

1, . . . , n.

Z(x) =
∫
<d
eiω

T xM(ω), (3.15)

whereM(·) is an orthogonal-increment process that has “jumps” at frequencies

ωi of size Zi, i = 1, . . . , n.

In fact, an important result is that every mean-zero weakly stationary ran-

dom process, Z(·), that is mean square continuous has representation (3.15).

Specifically,
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Theorem 3.1.1: (Bochner’s Theorem [1]). A complex-valued function K on

<d is the autocovariance function for a weakly stationary mean square contin-

uous complex-valued random process on <d if and only if it can be represented

as in (3.14) where F is a positive finite measure.

3.1.8 Space-Time Separable Covariance Functions

Because of fundamental differences in space and time dimensions, the covari-

ance function, C(h, τ), taking both spatial and temporal variability into ac-

count can often be simplified by separating the space and time components.

Usually, this decomposition is performed by using a sum of two components:

C(h, τ) = C1(h) + C2(τ), but it can also be decomposed into a product as

C(h, τ) = C1(h)C2(τ), where in both cases, C1(h) represents a purely spatial

covariance function and C2(τ) is a purely temporal covariance function.

Under the assumption of space-time separability the spatial behavior of

Z(u, t) is considered to be the same at all time points. Similarly for the

temporal behavior. Thus, no change of the spatial pattern from one time

point to another can be accounted for, nor can changes in the temporal pattern

from one spatial location to another. Additionally, there are no guidelines for

inferring the two component structures, C1(h) and C2(τ). Another problem is

that covariance models built from a sum of one-dimensional structures may not

be positive definite in higher dimensional spaces; and if no covariance exists,
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then there is no model. Nevertheless, the form of separable covariances are

mathematically congenial in that it is easier to formulate parametric families

that satisfy the definiteness property (Cressie and Huang [5]).

3.1.9 Non-separable Space-Time Covariance Functions

Non-separable space-time covariance functions have been an area of active

research, and some new classes of such functions have been derived (see, for

example, Cressie and Huang [5], Gneiting [14], and Ma [28]). Cressie and

Huang [5] give a clever and simple methodology for developing whole classes

of non-separable spatiotemporal stationary covariance functions in closed form,

based on Bochner’s Theorem [1] (see section 3.1.7).

The results of Cressie and Huang [5] were best described to me by Breidt

(personal communication). The following outlines his comments. Let Z(s, t)

be a stationary spatiotemporal process with continuous covariance function

C(h, u) and spectral density g(ω, τ) ≥ 0 then

Z(s, t) =
∫
eis

′ωeitτg
1
2 (ω, τ)dZH(ω)dZT (τ) (3.16)

where ZH and ZT are two uncorrelated processes of orthogonal increments

with E|dZH(ω)|2 = dω and E|dZT (τ)|2 = dτ .

Note that by Bochner’s theorem

C(h, u) =
∫ ∫

eih
′ω+iuτg(ω, τ)dωdτ (3.17)
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It is possible to rewrite equation (3.16) as

Z(s, t) =
∫
eis

′ωXω(t)K
1
2 (ω)dZH(ω)

where

Xω(t) =

∫
eitτg

1
2 (ω, τ)dZT (τ)

K
1
2 (ω)

and

K(ω) =
∫
g(ω, τ)dτ (3.18)

It follows that

Cov(Xω(t+ u), Xν(t)) =

1

K(ω)

∫
ei(t+u−t)τg(ω, τ)dτ =

h(ω, u)

K(ω)
= ρ(ω, u) (3.19)

For each ω, ρ(ω, u) is an autocorrelation function (ACF) in time, so Xω(t) is

a stationary time series with unit variance. This h(·; ·) corresponds with the

h(·; ·) from (6) in Cressie and Huang [5]. That is, they rewrite the Fourier

transform of (3.17),

g(ω; τ) = (2π)−d−1
∫ ∫

e−ih
′ω−iutC(h;u)dhdu,

in terms of the new function h(·; ·) from (3.19). Specifically,

g(ω; τ) = (2π)−1
∫
e−iuτh(ω;u)du,

where

h(ω;u) ≡ (2π)−d
∫
e−ih

′ωC(h;u)dh =
∫
eiuτg(ω; τ)dτ
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Further, Breidt rewrites equation (3.19) as

Cov(Xω(t+ u), Xν(t)) =
1

K
1
2 (ω)K

1
2 (ν)

∫
eiuτg

1
2 (ω, τ)g

1
2 (ν, τ)dτ (3.20)

From (3.20) one obtains that

Cov(Z(s+ h, t+ u), Z(s, t)) =

∫ ∫
ei(s+h)

′ωe−is
′νK

1
2 (ω)K

1
2 (ν)E[Xω(t+ u)Xν(t)]E[dZH(ω)dZH(ν)] =

∫
eih

′ωK(ω)ρ(ω, u)dω = C(h, u)

as in (8) of Cressie and Huang [5], which states that

C(h;u) ≡
∫
eih

′ωρ(ω;u)K(ω)dω (3.21)

Note that with K(ω) as in (3.18) and g(ω, τ) a spectral density, we have

that
∫
K(ω)dω <∞.

Cressie and Huang [5] proceed to construct classes of valid spatiotemporal

non-separable covariance functions by specifying functions for ρ(ω, t) andK(ω)

such that ρ(ω, ·) is a continuous ACF for each ω ∈ <d with
∫
ρ(ω, t)dt < ∞

and K(ω) > 0 as defined by equation (3.18). One example of such a para-

metric family of valid covariance functions, and subsequently spectral density

functions is derived by letting

ρ(ω, t) = exp(−‖ω‖
2t2

4
) exp(−δt2) (3.22)

with δ > 0 and k(ω) = exp(− c0‖ω‖2
4

), c0 > 0.
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These give rise to the covariance function

C(h, t) ∝ 1
(t2+c0)d/2 exp(− ‖h‖2

t2+c0
) exp(−δt2), δ > 0,

which is a continuous spatiotemporal covariance function in <d ×<. Because

the limit of a sequence of spatiotemporal stationary covariance functions is

still valid if the limit exists [30], as δ −→ 0, a three-parameter non-separable

spatiotemporal stationary covariance family is

C(h, t|θ) = σ2

(a2t2+1)d/2 exp(− b2‖h‖2
a2t2+1

),

where θ = (a, b, σ2)′, a ≥ 0 is the scaling parameter of time, b ≥ 0 is the

scaling parameter of space and σ2 = C(0, 0|θ) > 0. Because of redundancy in

the parameters a, b and c0, they set c0 = 1.

The above method for constructing valid spatiotemporal covariance func-

tions depends on finding closed-form Fourier transform pairs. Gneiting [14]

proposes another class of non-separable covariance functions that do not de-

pend on closed form Fourier transform pairs. Specifically, let φ(t), t ≥ 0, be a

completely monotone function and let ψ(t), t ≥ 0, be a positive function with

a completely monotone derivative. Then

C(h, τ) = σ2

ψ(|τ |2)d/2φ( ‖h‖2
ψ(|τ |2)

), (h; τ) ∈ <d ×<

is a space-time covariance function.

Ma [28] arrives at a related result to Cressie and Huang [5] for obtaining

families of spatiotemporal-temporal stationary covariances from known purely
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spatial and purely temporal covariances. His results can be summarized by

the following theorems and corollaries.

His first theorem provides a simple way of deriving space-time covariances

from purely spatial or purely temporal ones. Specifically,

Theorem 3.1.2: (Theorem 1 of Ma [28])

Let θ and θ0 be constant vectors on <d. If C0(s; t) is a spatiotemporal-temporal

stationary covariance on <d ×< then

C(s; t) = C0(s + θt; t+ θ′0s), (s; t) ∈ <d ×<

is a spatiotemporal-temporal stationary covariance on <d ×<.

From this theorem, two corollaries result, which simply state that if CM

is a stationary covariance on <k for k a positive integer, then if CM is a

purely spatial covariance function, C(s; t) = CM(s + θt) is a valid station-

ary covariance function and if CM is a purely temporal covariance function,

C(s; t) = CM(t + θ′0s) is a valid stationary covariance function. In this way,

it is easy to construct valid spatiotemporal-temporal covariances from known

purely spatial or temporal covariances. This result can also be extended so

that CM can vary off of the same hyperplane along which, for example, s + θt

is constant by allowing θ to be a random vector.

Ma [28] then constructs new families of spatiotemporal-temporal station-
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ary covariances from known purely spatial and purely temporal covariances

using his second theorem.

Theorem 3.1.3: (Theorem 2 of Ma [28])

Let d0 be a positive integer and µ(ω) be a nonnegative bounded measure

on <d0+ . If CS(s;ω) is a stationary covariance of s ∈ <d and a measurable

function of ω ∈ <d0+ for every s ∈ <d and CT (t;ω) is a stationary covariance of

t ∈ T for every ω ∈ <d+ and a measurable function of ω ∈ <d0+ for every t ∈ T ,

then

C(s; t) =
∫
<d0

+

CS(s;ω)CT (t;ω)dµ(ω), (s; t) ∈ <d × T (3.23)

is a spatiotemporal-temporal stationary covariance on <d × T , provided that

the integral exists for all (s; t) ∈ <d × T .

Covariance (3.23) is a mixture of separable covariances because for each

fixed ω ∈ <d0+ , the integrand of (3.23) is simply a product of the purely spatial

and temporal covariances.

It is as a special case of equation (3.23) that Ma [28] derives a method for

finding classes of non-separable space-time covariances that are related to the

results of Cressie and Huang [5]. Specifically, for each fixed ω ∈ <d+, cos(ω′s)

is a purely spatial correlation function corresponding to the process

Zω(s) = A cos(ω′s) +B sin(t;ω′s), s ∈ <d,
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where A and B are uncorrelated random variables with means of zero and

variances of 1. Thus substituting d0 = d and CS = cos(ω′s) yields the trans-

form method of corollary 2.1 in Ma [28]. Namely,

Corollary 3.1.1: (Corollary 2.1 of Ma [28])

Let µ(ω) be a nonnegative bounded measure on <d+. If CT (t;ω) is a sta-

tionary covariance of t ∈ T for every ω ∈ <d+ and a measurable function of

ω ∈ <d+ for every t ∈ T , then

C(s; t) =
∫
<d

+

cos(ω′s)CT (t;ω)dµ(ω), (s; t) ∈ <d × T

is a spatiotemporal-temporal stationary covariance on <d × T .

Ma [29] continues with this idea of mixture models to introduce two new

classes of valid covariances based on mixture models. Specifically, for T ∈ <1

or the set of positive integers, one type is of the form:

C(s; t) =
∫
<1

+×T
S(us)T (vt)dW (u, v), (3.24)

where S(s) and T (t) are purely spatial and temporal covariance functions on

<d and T and W (u, v) is a nonnegative bounded measure on <1
+×T . Equation

(3.24) reduces to a separable covariance function if W (u, v) is separable.

The second type is of the form:

C(s; t) =
∫
<2

+×T
Su(s)T v(t)dW (u, v), (3.25)
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where S(s) ≥ 0 and T (t) ≥ 0 are again purely spatial and temporal covariances

on <d and T and W (u, v) is a nonnegative bounded measure on <2
+×T . To en-

sure positive definiteness in (3.25), Ma [29] assumes that S(s) = exp{−γ1(s)}

and T (t) = exp{−γ2(t)}, where γ1(·) and γ2(·) are purely spatial and temporal

variograms.

Ma [29] summarizes (3.24) and (3.25) with the following theorem.

Theorem 3.1.4: (Theorem 3 of Ma [29])

Let L(θ1, θ2) be the Laplace transform of a nonnegative random vector (X1, X2).

If γ1(s) is a purely spatial variogram on <d and γ2(t) is a purely temporal var-

iogram on T , then

C(s, t) = L(γ1(s), γ2(t)) (3.26)

is a spatiotemporal-temporal covariance function on <d × T .

3.1.10 Spatial AR(1) Models

Space-time models may incorporate both space and time dimensions simul-

taneously or separately as spatially varying time series or temporally varying

spatial processes. Considered here, is a specific model that may be employed;

and is used in chapter 4 of this manuscript. One simple way to model space-

time data is to use an AR(1) model with spatial shocks. Let Z(x, t) denote

a space-time process with mean 0 and variance 1. For each spatial site, x,
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consider an AR(1) model over time for Z(x, t). Namely,

Z(x, t) = ρ(x)Z(x, t− 1) + ε(x, t) (3.27)

where |ρ(x)| < 1 for all x ∈ D, the spatial shocks, ε(x, t), are independent

over time but spatially correlated with covariance function Cov(ε(x, t), ε(x′, t))

given by √
1− ρ2(x)

√
1− ρ2(x′)ψ(x,x′).

Here, if ψ(·) is a correlation function, and if it is solely a function of a

distance between x and x′, then ε is stationary a stationary spatial process.

From (3.27), Z(x, t) can be written as an infinite sum over time as

Z(x, t) =
∞∑
j=0

ρ(x)jε(x, t− j)

From the above expression, it is straightforward to compute the covariance

function for Z(x, t) between two spatial locations at different times. Namely,

Cov(Z(x, t), Z(x′, t− τ)) =

Cov(
∞∑
j=0

ρ(x)jε(x, t− j),
∞∑
k=0

ρ(x)kε(x′, t− τ − k)) =

∞∑
j=0

∞∑
k=0

ρ(x)jρ(x)kCov(ε(x, t− j), ε(x′, t− τ − k)),

where Cov(ε(x, t− j), ε(x′, t− τ − k)) = 0 whenever t− j 6= t− τ − k so that

it is only nonzero when j = τ + k, and the above expression is equivalent to

the following.
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(ρ(x))τ
∑∞
k=0(ρ(x)ρ(x′))kCov(ε(x, t− τ − k), ε(x′, t− τ − k)) =

(ρ(x))τ
√

1− ρ2(x)
√

1− ρ2(x′)ψ(x,x′)

1− ρ(x)ρ(x′)
for τ ≥ 0 (3.28)

Note: If ρ(x) 6= ρ then

• Z(x, t) is not stationary in space even if ε(x, t) is stationary in space.

• Cov(Z(x, t), Z(x′, t− τ)) is not space-time separable.

Wikle [45] takes an alternative approach to this type of model. First, he

assume an observable and spatially continuous spatial process Z(x; t), where

x ∈ D, and discrete index of times t ∈ {1, 2, . . .}, and then supposes that the

observable process has a component of measurement error expressed through

the measurement equation

Z(x; t) = Y (x; t) + ε(x; t), (3.29)

where Y (x; t) is a “smoother” process than Z(x; t). The goal is to predict the

process Y (·; ·). In so doing, Wikle [45] assumes that Y (x; t) from (3.29) can

be written

Y (x; t) = YK(x; t) + ν(x; t), (3.30)

where ν(x; t) is a component of variance representing small-scale spatial vari-

ation. The component YK(x; t) is assumed to evolve according to the state

equation

YK(x; t) =
∫
D
wx(u)YK(u; t− 1)du + η(x; t), (3.31)
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where η(x; t) is a spatially colored noise process and wx(u) is a function rep-

resenting the interaction between the state process YK(u; t− 1) and YK(x; t);

that is, the temporally dynamic component.

3.2 Extreme Value Statistics

Although space-time models are useful for analyzing daily ozone data, the

NAAQS problem for ozone involves an order statistic, which suggests the use

of methods from extreme value theory. Characterizing multivariate extreme

value order statistics is a relatively new field. Currently, there are two main

approaches: classical models and threshold models.

3.2.1 Classical Models

Let X be a continuous random variable with probability density function

fX(x), and cumulative distribution function FX(x). If a random sample of

size n is drawn from fX(x), the marginal probability density function for the

r-th largest order statistic, X(n−r):n, is given by

fX(n−r):n
(u) =

n!

(r − 1)!(n− r)!
[FX(u)]n−r[1− FX(u)]rfX(u) (3.32)

where 1 ≤ r ≤ n. For the maximum, or equivalently the minimum, order

statistic (3.32) reduces to

fXn:n(u) = n(1− FX(u))nfX(u) (3.33)
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Although models exist for the r-th largest order statistic, most work has

been focused on the maximum (or, equivalently, the minimum) order statistic

(see, for example, Coles [3] and Leadbetter et al. [25]). If F is unknown,

distributions (3.32) and (3.33) are not helpful. In such cases, one can look at

what happens asymptotically. Because F n −→ 0 as n −→∞, it is necessary to

stabilize the location and scale of Mn = maxi=1,...,nXi as n increases by finding

sequences of constants {an} and {bn} such that for Mn−bn
an

= M∗
n, Pr{M∗

n ≤

z} = F (anz + bn) converges in distribution to a non-degenerate distribution

function as n −→∞. If such sequences can be found, then the extremal types

theorem (see, for example, Coles [3]) yields an important result. If there exist

sequences of constants {an} and {bn} such that P [Mn−bn
an

≤ z] −→ G(z) as

n −→ ∞ where G is a non-degenerate distribution function, then, regardless

of F , G belongs to one of three families of distributions. Namely,

• I (Gumbel): G(z) = exp{− exp{−( z−b
a

)}}, −∞ < z <∞.

• II (Fréchet): G(z) =


0, z ≤ b

exp{−( z−b
a

)−α}, z > b

• III (Weibull): G(z) =


exp{−[(− z−b

a
)α]}, z < b

1, z ≥ b

for parameters a > 0, b and α > 0. The above convergence occurs if and only

if n(1− F (anz + bn)) −→ − logG(z) [40].

These three families of distributions can be combined into a single family
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of models having distribution functions of the form:

G(z) = exp{−[1 + ξ(
z − µ

σ
)]−1/ξ} (3.34)

for {z : 1 + ξ( z−µ
σ

) > 0}, −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. Here,

ξ −→ 0 corresponds to the Gumbel distribution, ξ > 0 to the Fréchet and

ξ < 0 to the Weibull distribution. The family of models (3.34) is referred to

as the generalized extreme value (GEV) family of distributions.

Note:

• For n large, P [Mn ≤ z] ≈ G( z−bn
an

) = G∗(z).

• If for all n ∈ 2, 3, . . . there exist constants αn > 0 and βn such that

Gn(αnz + βn) = G(z), then G is said to be max-stable. A distribution is

max-stable if and only if it is a GEV [3].

There is an analogous extension of the above univariate asymptotic distri-

bution functions to the bivariate case. Take (X1, Y1), . . . , (Xn, Yn) independent

vectors of correlated pairs of random variables and let Mx,n = maxi=1,...,n{Xi}

and My,n = maxi=1,...,n{Yi} so that Mn = (Mx,n,My,n). The index i for which

the maximum of the Xi sequence occurs need not be the same as that of

the Yi sequence. A similar theorem to that of the univariate case is also

given by Coles [3]. Namely, let M∗
n = ( 1

n
Mx,n,

1
n
My,n) = (M∗

x,n,M
∗
y,n) where

(Xi, Yi) are independent vectors each with independent GEV marginal dis-

tributions. Specifically, x̃ = [1 + ξx(
x−µx

σx
)]1/ξx and ỹ = [1 + ξy(

y−µy

σy
)]1/ξy .
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Then, if P [M∗
x,n ≤ x,M∗

y,n ≤ y] −→ G(x, y) in distribution, where G is a

non-degenerate distribution function, then G has the form

G(x, y) = exp{−V (x, y)}, x > 0, y > 0

where V (x, y) = 2
∫ 1
0 max(ω

x
, 1−ω

y
)dH(ω) and H is a distribution function on

[0, 1] such that
∫ 1
0 ωH(ω) = 1

2
.

Note:

• This theorem does not apply if the marginal distributions for the Xi and

Yi sequences are normal or from any other non-GEV distribution.

• Gn(x, y) = G( 1
n
x, 1

n
y) for n = 2, 3, . . .. This is analogous to the idea of

max-stability in the univariate case.

3.2.2 Modeling Threshold Exceedances

An extension of this approach is to look at all values above a certain threshold.

The family of generalized Pareto distributions is a class of limiting distributions

for exceedances over a threshold, u, given by:

Pr{X > x|X > u} = G(x;σ, ξ, u) = 1−max{(1 + ξ
x− u

σ
)−1/ξ, 0}

valid on 0 < x < ∞ for ξ ≤ 0 or on 0 < x < σ
ξ

for ξ > 0 where x > 0 is the

excess over the threshold, σ is a scale parameter and ξ is a shape parameter

with ξ = 0 being the exponential distribution. Both σ and ξ can depend on

covariates.
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Smith [40] advocates viewing the high-level exceedances as points of a

Poisson process. That is, for X1, . . . , Xn, suppose there exist sequences of

constants {an > 0} and {bn} such that F n(anx+ bn) −→ H(x) in distribution,

where H is non-degenerate and let Yn,i = (Xi−bn)/an, i = 1, . . . , n and denote

Pn the point process on <2 with points ( i
n+1

, Yn,i), i = 1, . . . , n. The ordinates

of Pn will tend to cluster near the lower endpoint of the (rescaled) distribution,

but away from the boundary the process will look like a non-homogeneous

Poisson process, the intensity of which is given by

Λ{(t1, t2)× (z,∞)} = (t2 − t1)[1− ξ z−µ
σ

]1/ξ

where 0 ≤ t1 ≤ t2 ≤ 1 and 1− ξ z−µ
σ
> 0.

The above has been extended to extreme values of dependent stochastic

processes [40] (see section 3.2.3 below).

Smith and Huang [41] applied exceedance modeling to several data sets

extracted from the Chicago ozone study. One goal was to model the probability

that ozone on a given day exceeded a certain threshold as a function of a set

of covariates.

They selected three stations where ozone was high and also considered

daily maxima across the network. Separate days were assumed independent

given the likelihood for the data by:

L =
∏
i(pi)

δi(1− pi)
1−δi

where pi gives the probability that the threshold is exceeded on day i and δi
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is an indicator of whether the threshold is, in fact, exceeded on day i. A logit

model was used for pi. Namely,

log( pi

1−pi
) =

∑
j xijβj

where xij is the value of the jth covariate on day i and βj is the correspond-

ing coefficient. They also considered the excesses over a threshold using the

generalized Pareto distribution, which provided a good fit to the data [7].

3.2.3 Extremes of Dependent Sequences

The above analyses require the data to be independent. However, ground-

level ozone data is dependent both in space and time making it necessary to

incorporate such dependency into the models. Coles [3] discusses approaches

to this problem for both stationary and non-stationary time dependent data.

Davis [9] extends on ideas of LePage et al. [27] to establish nonnormal stable

limits for normalized partial sums of dependent random variables.

Let X1, X2, . . . be a series of stationary time-dependent random variables.

Define the following condition for asymptotic “near-dependence”. For any

i1 < · · · < ip < j1 < · · · < jq with j1 − ip > l, if

|Pr{Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq ≤ un}−

Pr{Xi1 ≤ un, . . . , Xip ≤ un}Pr{Xj1 ≤ un, . . . , Xjq ≤ un}| ≤ α(n, l), (3.35)

where α(n, l) −→ 0 for some sequence {ln} such that ln
n
−→ 0 as n −→ ∞,
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then this condition of asymptotic “near-dependence” is met.

If condition (3.35) is met, then for Mn = maxi=1,...,nXi the following theo-

rem holds.

Theorem 3.2.1

If there exist sequences {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} −→ G(z)

where G is a non-degenerate distribution function, then for un = anz + bn for

all z ∈ <, and assuming condition (3.35) is met, then G is a member of the

GEV family of distribution functions (see, for example, Coles [3]).

Furthermore, another theorem gives more specifics as to the nature of G.

Theorem 3.2.2

IfX1, X2, . . . are a stationary series with marginal distribution function, F , and

X∗
1 , X

∗
2 , . . . are a sequence of independent random variables also with marginal

distribution, F , with M∗
n = maxi=1,...,nX

∗
i then if condition (3.35) holds, and

under suitable regularity conditions

Pr{(M∗
n − bn)/an ≤ z} −→ G1(z) as n −→∞

with G1 non-degenerate if and only if

Pr{(Mn − bn)/an ≤ z} −→ G2(z),
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where G2(z) = Gθ
1(z) for a constant θ such that 0 < θ ≤ 1 (see, for example,

Coles [3]).

Subsequently, if G1(z) = exp{−[1 + ξ( z−µ
σ

]−
1
ξ } then G2(z) = exp{−[1 +

ξ( z−µ
′

σ′
)]−

1
ξ } where for ξ 6= 0, µ′ = µ − σ

ξ
(1 − θ−ξ) and σ′ = σθξ. For ξ = 0,

µ′ = µ + σ log θ and σ′ = σ. The quantity θ is called the extremal index.

Essentially, θ = (limiting mean cluster size)−1. For independent series, θ = 1,

but if θ = 1 it is not necessarily true that the series is independent.

In modeling the distribution of block maxima, it is appropriate to use the

GEV family even if the data is dependent (provided it is stationary), but

the validity of such a model may be questionable as the dependence in the

series increases. For threshold exceedance models, extra care must be taken

because of the tendency for extremes in a stationary series to cluster. One

suggestion for handling this problem is to decluster the data in order to obtain

a set of maxima data that is independent. There are many algorithms for

declustering data, but mostly these algorithms rely on human intuition and

cannot be performed automatically. One of the more popular methods, called

runs declustering, creates clusters based on run lengths between threshold ex-

ceedances. Ferro and Segers [10] propose an automatic method for declustering

that uses the extremal index to select an appropriate run length.

For non-stationary sequences it is not possible to establish a general the-

ory similar to that for stationary processes. Instead, one can use the stan-



52

dard extreme value models as basic templates and enhance them by statistical

modeling. For example, suppose Zt ∼ GEV(µ(t), σ, ξ) where µ(t) = β0 + β1t

for parameters β0 and β1. This allows variations through time in the observed

process to be modeled as a linear trend in the location parameter of the appro-

priate extreme value model. Naturally, one can use more complicated models

than a simple linear trend. Another option is to include covariates in the

model for µ(t).

It is also possible to allow σ to depend on time, however, it is important

to maintain the positivity of σ for all values of t. A useful model employs the

exponential link function, σ(t) = exp(β0 + β1t).

3.2.4 Multivariate Extreme Values

It should first be noted that there are a great many recent papers concerning

multivariate extremes. However, because the emphasis in this work is on ap-

proaching the seasonal statistic from spatiotemporal methods, only a very cur-

sory literature review is given here. The problem of characterizing the FHDA

field is a multivariate problem so that it is important to investigate the joint

distributions of random variables instead of simply looking at the marginal

distributions conditional on other locations as described in the previous sec-

tion. Multivariate extreme value theory is an active area of research, as is

demonstrated in a very recent paper by Heffernan and Tawn [20], where they

take multivariate extremes in an entirely different direction than any previous
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work. The fundamental difference in their approach from previous approaches

is that their method considers multivariate distributions where possibly only

one component of a random vector is extreme–as opposed to limiting results

where all of the components must be extreme. That is, previous work has

predominantly been concerned with the characterization:

limn−→∞ Pr
[

max{X11,...,Xn1}−bn1

an1
≤ z1, . . . ,

max{X11,...,Xnd}−bnd

and
≤ zd

]
=

G(z1, . . . , zd), (3.36)

where (Xi1, . . . , Xid), i = 1, 2, . . . are independent identically distributed d-

dimensional random vectors, aij, bij, i = 1, . . . , n, j = 1, . . . , d are normalizing

constants, and G is a non-degenerate d-dimensional distribution function. Un-

der weak conditions (Resnick [36] Ch. 5), there exists a real number, θ, such

that the normalized maximum of all the variables converge in distribution to

the Fréchet. That is,

G(z) = exp(−θ/z) (3.37)

One important result is that representation (3.36) is equivalent to mul-

tivariate regular variation (Resnick [36]). This discovery has led to many

parametric families for multivariate extreme value distributions, as well as the

development of threshold methods for multivariate extremes (see, for example,

Richard Smith’s discussion on Heffernan and Tawn [20]).

Much work on multivariate extremes has addressed the extremal coefficient,
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θ (Schlather and Tawn [38], Ferro and Segers [10], Coles [3]). Specifically, G

from (3.36) is given by

G(z1, . . . , zd) = exp{−V (z1, . . . , zd)}, (3.38)

where V (z1, . . . , zd) =
∫

maxi(
wi

zi
)dH(w1, . . . , wd) and H is a measure with all

marginal expectations equal to 1. From (3.38) and (3.37), we have that

θ =
∫

max
i
widH(w1, . . . , wd).

3.3 Nonstationarity

The interaction of chemical and physical atmospheric processes that tend to

produce data patterns for ground-level ozone with large spatial variability are

nonstationary processes, in the sense that the spatial structure varies with

location. For small regions stationarity is often a reasonable assumption, how-

ever, it is often of interest to look at larger regions. Fuentes [11] proposed

modeling a nonstationary process locally as a stationary random field with

some parameters that describe the local spatial structure. These parameters

are then allowed to vary across space to reflect the lack of stationarity over a

large region–such as the eastern United States (Fig. 2.1).

Specifically, Fuentes [11] assumes the model

Z(x) =
M∑
i=1

Zθ(si)(x)K(d(x, si)) (3.39)

where each Zθ(si) represents a spatial field around one of M nodes and the

Zθ(si) fields are orthogonal with covariance Cθ(si).
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A valid nonstationary covariance for Z, the spatial field for the entire re-

gion, is given by

Cov(Z(x), Z(y)) =
M∑
i=1

K(d(x, si))K(d(y, si))Cθ(si)(d(x,y)) (3.40)

Fuentes uses Matérn covariances (3.9) to model the individual covariances,

Cθ(si), i = 1, . . . ,M , where θ(si) = (νi, σi, ρi).

Other methods proposed for incorporating nonstationarity into a spatial

process include: the deformation approach of Sampson and Guttorp [39], a

moving windows approach (Haas [18]), and an extension of the empirical or-

thogonal functions (EOF) (Nychka et al. [32]). Higdon et al. [21] propose non-

stationary spatial covariances based on convolutions of kernels. Specifically,

let ψ(·) be a Gaussian white noise process with convolution kernel Kx centered

at the point x with its shape being a function solely of location x ∈ <2, then

the correlation between two points x and x′ is proportional to

∫
<2
Kxi

(u)Kxj
(u)du.

Then, the the process

Z(x) =
∫
<2
Kx(u)ψ(u)du.

is valid provided sup
∫
<2 K2

x(u)du <∞. Note that a major difference between

this approach and that of Fuentes [11] is that, here, each location has its own

kernel function. Paciorek [33] generalizes the approach of Higdon et al. [21] to

form a class of nonstationary correlation functions.
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Here, a brief outline of Paciorek’s work is given. A fundamental theorem of

Schoenberg [37] states that the class of functions positive definite on Hilbert

space is identical with the class of functions of the form

R(τ) =
∫ ∞

0
exp(−τ 2s)dH(s), (3.41)

where H(·) is non-decreasing and bounded, and s ≥ 0. The class of positive

definite functions on Hilbert space is identical to the class of functions that

are positive definite on <d for every d ∈ {1, 2, . . .}. The result of Paciorek [33]

is as follows.

Theorem 3.3.1

If an isotropic correlation function, R(τ), is positive definite on <d for every

d ∈ {1, 2, . . .}, then the function, R(·, ·) defined by

C(xi,xj) =
2d/2|Σi|

1
4 |Σj|

1
4

|Σi + Σj|
1
2

R(
√
Qij), (3.42)

is a positive definite nonstationary correlation function, where R(·) is as in

(3.41), and Qij is given by

Qij = (xi − xj)
T
[
Σi + Σj

2

]−1

(xi − xj).
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3.4 Previous Work on Ozone Modeling and

the FHDA field

There are numerous statistical papers associated with ground-level ozone. Be-

cause the new NAAQS for ozone has only recently been enacted, most of these

papers either deal with the old 1-hour standard, regulation in other countries,

or are not concerned with regulation. Therefore, there is not much literature

on interpolating this new standard off of the network. Fuentes [11] applies

the nonstationary model (3.39) to predict the FHDA on a grid for the entire

eastern United States. Here, I will go into a little more detail on this approach,

and then discuss some other work related to the new standard. Finally, I give

a very brief summary of some of the other statistical work related to ozone.

3.4.1 Interpolating NAAQS for Ozone off of Monitoring

Network

Fuentes [11] presents a new statistical model for interpolation of nonstationary

processes also with the objective of estimating ground-level ozone concentra-

tions on and off of the monitoring network for determination of attainment of

the NAAQS. She applies a Bayesian framework for interpolation and calculates

the predictive posterior distribution (ppd) in place of finding a point predic-

tion. This provides more information about the distributional characteristics

of the FHDA field than a simple point estimate can provide. Simulated val-
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ues from the ppd are used to estimate the probability of non-attainment at a

particular location by calculating the proportion of simulated values from the

ppd that are out of compliance.

Fuentes [11] applies model (3.39) with covariance given by (3.40) using a

Bayesian paradigm to make inferences on the FHDA field. The FHDA field was

found using 1995 to 1997, 1996 to 1998 and 1997 to 1999 to obtain the three

year averages of FHDA. Non-attainment regions were typically near big cities.

In the northeast, they included regions in and around Baltimore, Washing-

ton, D.C., Philadelphia, New York, Hartford, Providence and Boston. Other

regions were in and around Pittsburgh, Atlanta, Memphis, Charlotte, Gary,

Saint Louis, Dayton and Cleveland. Fuentes found that 1996 was associated

with lower ozone, but that it also had a particularly cool summer, which is

likely the reason for the lower ozone. Similarly, 1998 had a hot, dry summer

with higher ozone levels at least in Kentucky, West Virginia and Tennessee.

Changes found for these areas for 1999 (which uses the average of 1997 to

1999) by Fuentes [11] were most likely due to changes in meteorology rather

than emissions of NOx and volatile organic compounds.

Fuentes [11] also compared the region around the Research Triangle Park

(RTP) in North Carolina to Atlanta and Indianapolis. All three, on average,

were out of compliance, but each had very different distributions. Indiana and

Atlanta both had an average of 96 ppb while RTP had an average of 88 ppb.

Atlanta had much more variability (standard deviation of 5.8 ppb) than either
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RTP (1.7 ppb) or Indiana (2.2 ppb).

It should be noted that Fuentes [11] does not perform any cross-validation

to give an independent validation of the model.

3.4.2 Other Work Related to the NAAQS for Ozone

Davis and Speckman [8] look at predicting both the maximum and the 8-hour

average for one day into the future, but not off of the network. Their region of

interest was Houston, Texas with 11 stations for 214 days from April through

October and for the years from 1981 through 1992. They also investigated

the incorporation of numerous meteorological covariates. Ultimately they set-

tled on just a few of the meteorological components. Specifically, averages

of hourly variables including: early morning, mid-morning and daytime wind

components, daytime opaque cloud cover, maximum one day lagged ozone,

daily maximum temperature and morning mixing depth.

Davis and Speckman [8] tested many different models including linear re-

gression, non-linear regression and neural nets, but the best model was found to

be loess/generalized additive model approach (GAM). The root mean squared

error for 8-hour averages forecasts ranged from 13.2 to 16.3 ppb with an R2

in the range 0.66 to 0.73 and for the maximum ozone the root mean squared

error ranged from 18.5 to 22.0 ppb with 0.61 to 0.68 for the R2 coefficient of

correlation. It was found that the one day lag term removed the need to fit an

overall trend. The forecasts did well generally, but forecasts for meteorological
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transitions, such as frontal passages, were unreliable and subsequently their

model did not attain the predictive capabilities that had been desired.

3.4.3 Other Work Relating to Ground-level Ozone

Guttorp et al. [17] examine hourly ozone data collected as part of a model

evaluation study for ozone transport in the San Joaquin Valley of California.

They looked at a space-time analysis of ground level ozone and performed

spatial interpolation off of the network for the hourly ozone data, which had

periodic effects during the day in addition to day-to-day cycles. Their data

came from the SARMAP study, which is a regional model application project

for this area and includes surface records of many pollutants as well as mete-

orological variables. They looked at 326 monitoring sites in the San Joaquin

Valley with particular emphasis on a subset of 17 stations around Sacramento,

California.

Among Guttorp et al.’s [17] findings is a distinction between stations at

high elevations from those at lower elevations. Particularly, they noticed that

those at the higher elevations had a flatter 24-hour temporal mean curve im-

plying that the depletion of ozone by chemical reaction is more rapid below

the nocturnal inversion layer. In both cases, there were strong temporal corre-

lations in the residuals from subtracting station specific hourly means. They

tried several time series models, but found that an AR(2) model was sufficient

over more complicated ARIMA or ARMA models.



Chapter 4

Comparison of Daily and

Seasonal Models for Ozone

The application of statistical techniques to environmental problems often in-

volves a trade-off between simple methods that are easily implemented and in-

terpreted, and more complicated methods that may have smaller errors. In this

chapter, simple and complicated statistical models are compared for interpo-

lating the NAAQS for ground-level ozone off of a network of monitoring sites.

It should be noted that the methods discussed here are applicable to other

problems besides FHDA. For example, if the standard were to be changed to a

different order statistic, such as third-highest daily maximum 8-hour average

ozone, the techniques can still be used with only minor modifications. Here,

a small homogeneous subset of 72 monitoring sites around North Carolina,

where the standardized daily field is assumed to be stationary, are examined.

61
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The new NAAQS (section 2.4) presents a new statistical problem for inferring

regions of attainment or non-attainment because it is not clear that the FHDA

field (a field of order statistics) is Gaussian–a fundamental assumption of most

standard spatial statistical techniques.

Although the use of spatial statistics for interpolating air quality mea-

surements would not be disputed by a statistical audience, surprisingly the

use of monitoring data in a regulatory context is often limited to point loca-

tions. Accordingly, Holland et al. [22] argue for the introduction of modern

statistical methods to understand the spatial and temporal extent of pollution

fields based on monitoring data. Given the range of statistical backgrounds

associated with the regulatory community, it is appropriate to propose sta-

tistical methods that are simple and understandable to a broad group when

such methods provide an accurate and defensible analysis. In particular, for

interpolating the NAAQS, it is useful to ascertain the feasibility of approxi-

mate statistical methods that treat the FHDA statistics directly. From this

perspective, two statistical models are compared. The first, a fairly complex

model, uses a spatial AR(1) model for daily ozone measurements and samples

the FHDA field conditional on the data for the entire season. This approach

will be referred to as the daily model. The second model, referred to the

seasonal model, is a geostatistical model that predicts the FHDA field from

the network values using standard best linear unbiased estimation, or krig-

ing (section 3.1.1). This seasonal model is similar to the model proposed by
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Figure 4.1: Time series of ground-level ozone (ppb) for the three monitoring
stations circled in Fig. 2.2 for 1997 ozone season.

Fuentes [11], except that the region of interest here is much smaller and so can

be assumed to be spatially and temporally stationary. A third approach that

will be used as a benchmark estimates the FHDA field by way of a thin plate

spline (section 3.1.4). This last method is generic and uses the least amount

of information concerning the actual air quality context.
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Figure 4.2: Time series of standardized ground-level ozone for 1997 ozone
season at one station for (top) daily maximum 8-hour average ozone (ppb),
(middle) regression fit and (bottom) residuals (de-seasonalized/standardized
daily ozone).

4.1 Fitting an AR(1) Spatiotemporal Model

4.1.1 Standardizing the Data

Ozone has a seasonal effect even during the relatively short ozone season de-

scribed in section 2.3.1. In fact, inspection of Fig. 4.1 suggests that there is

seasonality in the daily data. It is useful to account for this seasonality as a

fixed effect before modeling space-time structure.

Recall that for the ozone NAAQS example, daily values are the daily maxi-
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mum 8-hour average ozone. Therefore, let O(x, t) denote the maximum 8-hour

average ozone at location x and day t. The following standardization is used

for the daily maximum 8-hour ozone measurement.

O(x, t) = µ(x, t) + σ(x)u(x, t) (4.1)

and it is assumed that u(x, t) for any given location and time has mean zero

and variance one. Note that µ is a function of both time and space in order

to remove any seasonality.

The seasonal means are smoothed over space using a singular value decom-

position approach. First, the m individual station time series are regressed

on an intercept and three sine and cosine pairs with periods 365, 365/2 and

365/4. Here, three sine and cosine pairs were found to be adequate based on

F-statistics from the regression fits, and the periods chosen in order to capture

an overall yearly, semi-annual and quarterly trend. However, other periods

and numbers of sine and cosine pairs could be used based on the data being

analyzed.

Let B denote the m × 7 matrix of regression coefficients across all the

stations, then B can be decomposed as B = UDVT where U and V are

orthogonal matrices and D is a diagonal matrix of the singular values of B.

By setting some of the singular values of D to zero (call the resulting matrix

D∗), the multiplication B∗ = UD∗VT yields a matrix of a constrained set

of the original regression parameters, having reduced the variability across

stations. For the analyses here, the first three principle components, which



66

explain 96% of the variation, are retained (i.e., the last four singular values

were set to zero); and, in this case, results smooth the estimated parameters

over space. Each of the components include a relatively large loading for the

intercept term, and the first and second components give slightly differing

weights to each of the periods. The first gives more weight to the annual

period, while the second gives more weight to the semi-annual and quarterly

periods. Finally, the estimates of µ and σ based on station locations are

extrapolated to unobserved locations using thin plate spline interpolation.

The daily model approach uses Monte Carlo simulations to generate a

sample from the FHDA distribution. Specifically, a space-time model is used

to simulate daily ozone data at arbitrary locations conditional on what is

observed for an entire season of ozone, and from this sample the fourth-highest

value is taken. This process is repeated many times, say 1000, to achieve the

desired sample.

4.1.2 The Daily Model

Given the standardized process, u(x, t), consider the spatial autoregressive

models.

u(x, t) = ρ(x)u(x, t− 1) + ε(x, t) (4.2)

and

u(x, t) = ρ1(x)u(x, t− 1) + ρ2(x)u(x, t− 2) + ε(x, t) (4.3)
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Here, the shocks, ε(x, t), are assumed to be independent over time and be a

mean zero Gaussian process over space. For the AR(1) process, this covariance

is given by √
1− ρ2(x)

√
1− ρ2(x′)ψ(d(x,x′)) (4.4)

Here, the covariance (4.4) is considered to be isotropic and stationary with

d(x,x′) the great circle distance transformed to ensure that ψ is positive def-

inite (i.e., d(x,x′) = 2sin(h/2), where h is the angular great circle distance)

(see, for example, Gneiting [15], and Gaspari and Cohn [13]). Equation (4.2)

implies a space-time covariance function

C(u(x, t), u(x′, t− τ)) =
(ρ(x))τ

√
1− ρ2(x)

√
1− ρ2(x′)ψ(d(x,x′))

1− ρ(x)ρ(x′)
, τ ≥ 0

(4.5)

Thus, if the AR(1) parameters are not constant over space, then (i) the spatial

process u(x, t) is not stationary even if the shocks are stationary in space and

(ii) covariance (4.5) is not space-time separable. Note that for x = x′, (4.5)

reduces to (ρ(x))τ so that for τ = 0, V ar(u(x, t) = 1 and the covariance at one

location and two different times is a function of the autoregressive coefficient

raised to the time lag. For ρ(x) = ρ (4.5) reduces to ρτψ(d(x,x′). Addition-

ally, covariance (4.5) is not fully symmetric (i.e., Cov(u(x, t), u(x′, t− τ)) and

Cov(u(x′, t), u(x, t − τ)) generally differ). The violation of full symmetry is

physically justifiable here because ozone is often transported by wind in only

one direction.
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4.1.3 Sampling the distribution of FHDA conditioned

by the monitoring data

Under the assumption that all the components of the data model are known,

there is a straightforward algorithm for sampling the FHDA field conditional

on the observed data. This algorithm is quite efficient and uses the autore-

gressive structure over time to recursively generate the daily process. Let x0

be a location where ozone is unobserved. A spatial prediction for the FHDA

at this location involves two steps. First, a sample of the time series of daily

ozone measurements at this location conditional on the observed data (for all

locations and all times) is obtained, then the FHDA for this series is found.

By elementary probability, the resulting FHDA statistics will be a sample of

the FHDA field at x0 conditional on the data. Repeating these two steps,

one can generate a random sample that approximates the FHDA conditional

distribution; and, of course, the sample mean is a point estimate for the con-

ditional expectation of the FHDA at x0. The conditional variance can be used

as a measure of uncertainty.

Sampling from the conditional distribution of the ozone is simplified by the

autoregressive structure over time and the restriction of spatial dependence to

the shocks in the AR(1) innovation. Here, all parameters (µ(x, t), σ(x), ρ(x), ψ)

are fixed quantities and assumed known. Also let {xk, for 1 ≤ k ≤ m} be

the station locations. Based on these assumptions it is sufficient to find the
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conditional distribution of {u(x0, t), 1 ≤ t ≤ T} given {u(xk, t), 1 ≤ t ≤

T, and 1 ≤ k ≤ m} because the standardized random variables can always be

transformed back to the raw scale of the measurements. Moreover, the σ-field

of {u(x, t), 1 ≤ t ≤ T}, for any x is equivalent, through the autoregressive

relationship, to the field generated by {u(x, 1), ε(x, t), 2 ≤ t ≤ T}. Recall

that the AR shocks are temporally independent so that the conditional dis-

tribution for the ozone fields at x0 can be found based on the much simpler

conditional distribution of ε(x0, t) given {ε(xk, t), 1 ≤ k ≤ m}. Thus, it is

easy to generate a conditional ozone field by considering the conditional field

of the AR(1) shocks and then transforming these results to the original scale

of measurements.

An approximate algorithm for the conditional sampling of the FHDA field

is now summarized below.

1. Initialize the time series by interpolating u(x0, 1) from u(xk, 1) 1 ≤ k ≤

m.

2. For t in 2 to T sample the spatial shocks from [ε(x0, t)|{ε(xk, t), 1 ≤ k ≤

m}].

3. Accumulate the sampled shocks and initial values using the autoregres-

sive relationship (4.2) to obtain a conditional realization of the standard-

ized process u(x0, t).

4. Unstandardize and compute the FHDA at x0 based on the series simu-
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lated for the ozone season.

Note that the shocks at a station location are based on the actual daily

observations so that the sample is tied explicitly to the data. If, in fact, x0

is at a station location, and the spatial process has a zero nugget variance,

then the resulting conditional sample will simply be the observed data. Thus

the “conditional realization of the FHDA field” will be the FHDA statistic for

that station’s measurement.

It should be noted that this algorithm works because complete observa-

tions at the station locations are assumed. It would be more complicated

if observations were sparse over time. For these data there are no instances

where there are missing observations at a given time point at every station.

Therefore, when shocks are sampled from the conditional distribution, loca-

tions that have missing values are simply not used in the calculation for that

time point.

Although it is possible to sample in Step 1 exactly, approximate sampling

was done from a geostatistical model fit to the standardized fields. Because

ρ(x) does not vary greatly (estimates are all within the range of about 0.5

to 0.7, with approximately 70% of them within the range of 0.5 to 0.6), the

covariance of the standardized process is stationary. Subsequently, based on

data from an entire season, the data will be well estimated by geostatistical

methods. Moreover, based on the magnitude of the autoregressive coefficients,

the time series becomes nearly independent of the initial value after several
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days. For these reasons, the approximation is adequate.

If it is desired to obtain a sample from a different distribution than that

of the FHDA, it is a small matter of computing a different statistic in Step 4

of this algorithm. For example, one could take the third-highest value of the

simulated season of data, or even the mean.

In this algorithm it is straightforward to replace the conditional sampling

of a single location with a vector, or grid of locations. Thus one obtains a

conditional field with spatial and temporal dependence among the grid points

consistent with the space-time model. In addition, this algorithm can be

modified simply to simulate a space-time process that follows this model. In

this case one does not condition on observed data, and one substitutes an

unconditional sample for the conditional sample of the shocks at Step 2. This

unconditional sampling is used in the next section to identify an approximate

Gaussian model for the FHDA field.

4.2 Bivariate Fourth-highest Order Statistic

Distribution

In this section, I argue that, despite being a field of order statistics, the

FHDA field is approximately multivariate Gaussian. A bivariate sample of

size 1000 of fourth-highest order statistics from samples of bivariate mean-
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Figure 4.3: Bivariate sample of size 1000 of fourth-highest order statistics
taken from samples of independent bivariate mean-zero, variance-one normal
random variables, (X, Y ), with correlation 0.95 and size 184.

zero, variance-one normal random variables with correlation 0.95 and size 184

was found. Note that resulting pairs of fourth-highest values do not necessarily

correspond to pairs from the original bivariate samples, and the resulting cor-

relation is about 0.70. Inspection of this particular sample suggests that for the

bivariate case, the assumption of approximate bivariate normality is reasonable

(see, for example, Fig. 4.3), so it may be reasonable for the multivariate case.

Note that the correlation between pairs dropped by about 25% after taking the

fourth-highest value. For smaller correlations, this suggests that multivariate

fourth-highest random variables may be approximately independent so that
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checking for approximate marginal normality may be sufficient.

Let X and Y be independent identically distributed bivariate random vec-

tors with joint cdf, FX,Y (x, y), and marginal cdf’s, FX(x) and FY (y) respec-

tively, and let X ′ = X(n−3):n and Y ′ = Y(n−3):n denote the fourth-highest order

statistic for each component. The joint cdf for the bivariate fourth-highest

order statistics, P{X ′ ≤ x, Y ′ ≤ y}, is given by the following.

∑3
k=0

∑3
j1=0

∑3
j2=0

(
n

n−k,j1,j2,k−j1−j2

)
F n−k
X,Y (x, y){FY (y)− FX,Y (x, y)}j1×

{FX(x)− FX,Y (x, y)}j2{1− FX(x)− FY (y) + FX,Y (x, y)}k−j1−j2 (4.6)

The marginal cdf for the fourth-highest order statistic X ′ = X(n−3):n is

given by

Pr{X ′ ≤ x} =
3∑

k=0

(
n

k

)
F n−k
X (x)(1− FX(x))k,

which leads to the pdf

fX′(x) =

(
n

n− 4, 1, 3

)
fX(x)F n−4

X (x)(1− FX(x))3 (4.7)

The exact density (4.7) for the fourth-highest order statistic with n = 184

is shown in Fig. 4.4 along with a normal density with mean 2.06 and variance

0.0441, and it appears that the exact fourth-highest distribution can be well

approximated by a normal density. However, perhaps a better diagnostic

are the normal quantile-quantile plots shown in Fig. 4.5 for predicted FHDA

(from the daily model) for a single grid point in two different years, where

one year the grid point was predicted in attainment, and the other year out
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Figure 4.4: Exact marginal fourth-highest order statistic X ′ = X(n−3):n density
function for n = 184 with underlying X ∼ N(0, 1) (solid line), and normal
density function with µ = 2.06 and σ2 = 0.0441 (dashed line).

of attainment. The figure shows that the distribution of FHDA at this grid

point does not deviate substantially from normality in either case. Such plots

at other grid points showed similar results for, at least, marginal normality.
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Figure 4.5: Normal quantile plots for simulated (daily model) FHDA values for
a grid point in the RTP region in 1997 (left) and 1999 (right). Note that this
grid point is predicted by the daily model to be in attainment of the NAAQS
for ground-level ozone in 1997, but not in 1999.

4.3 The Seasonal Model

For the seasonal model the supposition is that the FHDA field is approximately

Gaussian distributed, so the main modeling issue is to derive a suitable co-

variance function. Results from section 4.2 suggest that the assumption that

the distribution of the fourth-highest order statistic is approximately normal

is reasonable.

To estimate the covariance function for FHDA, it is convenient to use Monte

Carlo simulations similar to those used for the daily model approach in order

to look at the correlogram of the FHDA field and fit a function. The algorithm



76

used to do this is essentially the same as that of the daily model (section 4.1.2)

except that the spatial shocks are sampled from an unconditional distribution

in step 2. Specifically,

ε(x, t) ∼ Gau(0,Σε) (4.8)

where Σε is given by (4.4). A covariance function can be derived from empirical

correlations of the sample from the unconditional FHDA field. For comparison,

a variogram derived from the observed FHDA field is also used.

4.4 Results of the Two Models

4.4.1 Results from the Daily Model

In the daily model approach, the data of interest for spatial prediction is

the standardized daily maximum 8-hour average, which is the average ozone

reading taken for each 8-hour block of time in a given day; the maximum

of each of these blocks of time is the record for that day. Supposing that

the ozone readings are normally distributed, taking the averages over blocks

of time will preserve the normality. However, maximum values are typically

not normally distributed. Despite having many 8-hour intervals in each day,

the maximums tend to occur around the same time of day each day; and

so is analogous to taking the average of the 8-hour interval centered around

2:00pm (see, for example, Davis et al. [6]). For this reason, and that the daily

value is an average over this interval, it is possible that the data are, at least
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Figure 4.6: Normal QQ-plots for standardized daily maximum 8-hour average
ozone levels from the three stations (circled in Fig 2.2).

approximately, normal.

Examination of normal quantile plots and histograms for standardized daily

maximum 8-hour averages, u of Eq. (4.1), shows that, at least approximate,

normality is a reasonable assumption–Figs. 4.6 and 4.7 show these plots for

three stations (circled in Fig. 2.2).

Partial autocorrelation plots (Fig. 4.8) suggest that it is reasonable to use a

spatial AR(1) model, as discussed in section 3.1.10, to estimate the daily field.
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Figure 4.7: Histograms of standardized daily maximum 8-hour average ozone
levels from the stations (circled in Fig 2.2) with standard normal density (solid
line).

Further, Fig. 4.9 shows box plots of the estimated autoregressive correlation

coefficients ρ̂1(x) and ρ̂2(x). Clearly, ρ̂2 is near zero for all stations suggest-

ing its contribution is negligible. The plot of ρ̂1 suggests that the estimates

are similar to those found in fitting the AR(1) model. Additionally, empiri-

cal correlograms for the AR(1) (Fig. 4.10) and AR(2) (Fig. 4.11) shocks also

appear to be very similar; providing further evidence that an AR(1) model is

sufficient.
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Figure 4.8: Partial Autocorrelation Function (PACF) for stations (a) 11, (b)
32 and (c) 34 (circled in Fig. 2.2).

The AR(1) parameters vary across stations (Fig. 4.12), which is to be ex-

pected even under stationarity. To assess stationarity of the autoregressive

shocks, a local correlogram is fit for each station location using a single expo-

nential covariance function. Standard errors of parameters were found using

a parametric bootstrap. The estimated nugget variance and range parameters

do not vary significantly across the domain–each having a small range and

standard deviation; from 0.83 to 1.03 ppb (0.04 ppb) for the estimated nugget
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Figure 4.9: Box plots of estimated AR(2) coefficients ρ̂1 (left) and ρ̂2 (right).

and 164 to 328 miles (33 miles) for the estimated range–suggesting that the

spatial shocks field can be approximated by a stationary process (Fig. 4.13).

Further, the largest differences in the estimates generally occur on the edges

to the West and along the southern coast (Fig. 4.14).

The general shape of the empirical correlogram (Fig. 4.10) suggests fitting
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Figure 4.10: Empirical correlogram for AR(1) shocks.

a mixture of exponentials correlation function.

ψ(d(x,x′)) = α exp(−d(x,x′)/θ1) + (1− α) exp(−d(x,x′)/θ2) (4.9)

where d(x,x′) is the distance between two locations x and x′, θ1 accounts for

short range correlation and θ2 for long range correlation.

Correlation model (4.9) allows the spatial field to be interpreted as the sum

of two independent spatial processes with possibly different correlation scales

without changing the smoothness of ψ at zero, but the shape will be modified

for short distances. The reader should note that unlike a geostatistical analysis

for a single field, the correlations associated with the shocks are statistics based
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Figure 4.11: Empirical correlogram plot for AR(2) shocks.

on a large (n > 500) sample size, which enables enough accuracy to facilitate

modeling detailed features such as the mixture component.

The fitted parameters for Equation (4.9) for the AR(1) shocks are (range

parameter estimates converted to miles): α̂ ≈ 0.13 (0.02), θ̂1 ≈ 11 miles (3.37

miles) and θ̂2 ≈ 272 miles (16.89 miles) with parametric bootstrap standard

errors in parentheses. Results from a parametric bootstrap show that estimates

of the AR(1) coefficients are unbiased because bootstrap estimates of the AR

coefficients subtracted from the autoregressive coefficients estimated from the

data are centered around zero (Fig. 4.15), and the variability in the estimates
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Figure 4.12: AR(1) coefficients estimated (and interpolated by thin plate
spline) for each of the 72 locations in and around North Carolina.

is much larger than any potential bias.

The fitted model was used to generate conditional fields for the FHDA for

each year and a 15×15 rectangular grid in the RTP subregion (Fig. 2.2). One

thousand Monte Carlo realizations were used to approximate the distribution.

Leave-one-out cross-validation results for each year are shown in Table 4.1,
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Figure 4.13: Boxplots of estimated nugget (left) and range (right) parameters
for single exponential covariances fit at individual stations.

and on average the RMSE of the cross-validation residuals is about 4.46 ppb.

Model prediction standard errors (MPSE) are summarized in Table 4.2, and

on average these prediction errors are about 3 ppb. The model generated pre-

diction errors underestimate the uncertainty in the predicted values of FHDA.

Across the five seasons, the daily model tends to underestimate the standard

error by about 34% (compared with cross-validation residuals). One explana-

tion of this bias is that the daily model is not able to account for occasional

large ozone values that appear in the data at a daily time scale. Not accounting

for this non-Gaussian distribution in the shocks may not accurately capture

the variability of the FHDA field.
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Figure 4.14: Estimated nugget (left) and range (right) parameters for sin-
gle exponential covariances fit at individual stations. Here, these values are
interpolated by way of a thin plate spline.

Table 4.1: Leave-one-out cross-validation RMSE (ppb) for predicting FHDA.

Thin Plate Seasonal Seasonal Daily

Spline Model (ψv) Model (ψm) Model

1995 5.34 5.19 5.33 4.73

1996 5.61 5.51 5.68 4.84

1997 6.27 6.03 6.05 4.59

1998 5.00 4.98 4.93 3.25

1999 6.25 6.47 6.30 4.91
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Figure 4.15: AR(1) coefficients estimated from the data (ρ̂) minus parametric
bootstrap AR(1) estimates (ρ̃).

Table 4.2: Averages of Model Prediction Standard Errors (MPSE) (ppb).

Thin Plate Seasonal Seasonal Daily

Spline Model (ψv) Model (ψm) Model

1995 2.23 5.68 5.27 2.67

1996 2.49 5.96 5.90 2.85

1997 2.91 6.41 6.02 3.01

1998 2.75 5.35 4.85 2.93

1999 4.34 6.76 6.22 2.94
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4.4.2 Seasonal Model Results

The seasonal approach applies a spatial model directly to the FHDA values,

so a key step is to estimate a covariance function for this field. Empirical

variograms for each of the 5 seasons indicate that almost all of the spatial

dependence in the FHDA field appears to be limited to a very short range of

less than 100 miles. A mixture of exponentials variogram

γ(d(x,x′)) = σ2(1− α exp(−d(x,x′)/θ1)− (1− α) exp(−d(x,x′)/θ2))

was fit using all five years of data with parameter estimates: σ̂ ≈ 7.37 ppb,

α̂ ≈ 0.38, θ̂1 ≈ 0.62 miles and θ̂2 ≈ 48.61 miles and subsequently converted to

a covariance function, ψv. Average MPSEs on the RTP grid are summarized

in Table 4.2. On average, these prediction errors are about 6 ppb, slightly

greater than that of the daily model approach.

For comparison to estimating the covariance from the FHDA variogram,

a covariance function was estimated from unconditional simulations of the

daily model. Based on a Monte Carlo sample of 600 FHDA simulated fields,

a mixture of exponentials (4.9) was fit to the empirical correlations, call it

ψm. The estimated parameters are α̂ ≈ 0.51, θ̂1 ≈ 8.66 and θ̂2 ≈ 128.76. The

spatial prediction errors using this covariance are summarized in Table 4.2 and

are, on average, 5.6 ppb, which is comparable to the seasonal model prediction

errors using ψv. The seasonal analysis is done using the fields package [31] in

R.
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The thin plate spline model was fit (using Tps from the R package fields

(Nychka et al. [31])) with a linear drift and the smoothing parameter chosen

by generalized cross-validation.

MPSE (Table 4.2) are, on average, about 3 ppb, and are generally close to

those of the daily model MPSEs.

4.4.3 Model Comparison

Daily model MPSE (Table 4.2) are generally smaller than the seasonal

models; particularly away from station locations. The spline method tends

to have similar prediction standard errors as the daily model, but there is

less prediction precision away from the monitoring network than the seasonal

model.

Model-based standard errors can either be reliable or misleading depending

on the adequacy of the spatial model. It is also of interest to use cross-

validation (CV) to evaluate the average prediction error of these methods. The

standard leave-one-out procedure was applied to each monitoring location and

method, and Table 4.1 reports for each year the CV RMSE for the differences

between the predicted FHDA and the actual station values. The seasonal

model CV RMSE for either choice of covariance and thin plate spline are very

similar for each year. The daily model CV RMSE is consistently lower than

the other models, but only slightly.
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Figure 4.16: Predicted FHDA from (a) daily model and (c) seasonal model
(faded numbers are observed FHDA), and model prediction standard errors
(MPSE) for (b) daily model and (d) seasonal model for 1995.

Both models predict FHDA similarly (Figs. 4.16 through 4.20); the daily

model having a tendency to predict a bit higher away from station locations

than the seasonal model. The MPSE for the daily model is generally lower

away from station locations, but of course, because the daily model is not able

to account for occasional large ozone values that appear in the data based on

a Gaussian assumption at a daily time scale. Therefore, the consistently low

MPSEs for the daily model are not believable.
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Figure 4.17: Predicted FHDA from (a) daily model and (c) seasonal model
(faded numbers are observed FHDA), and model prediction standard errors
(MPSE) for (b) daily model and (d) seasonal model for 1996.

Figure 4.18: Predicted FHDA from (a) daily model and (c) seasonal model
(faded numbers are observed FHDA), and model prediction standard errors
(MPSE) for (b) daily model and (d) seasonal model for 1997.
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Figure 4.19: Predicted FHDA from (a) daily model and (c) seasonal model
(faded numbers are observed FHDA), and model prediction standard errors
(MPSE) for (b) daily model and (d) seasonal model for 1998.

Although care is needed in generalizing results from a specific data set to

other cases, this work has shown a preference to analyze the FHDA standard

using a daily model for ozone and then aggregating over the season to infer

the FHDA field. The results for the North Carolina study region show that

the seasonal model is reasonable, but the daily model is generally more accu-

rate, based on the CV measures of RMSE in addition to having lower model

standard errors of prediction.

Conceptually, the daily model has advantages in using fairly simple sta-
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Figure 4.20: Predicted FHDA from (a) daily model and (c) seasonal model
(faded numbers are observed FHDA), and model prediction standard errors
(MPSE) for (b) daily model and (d) seasonal model for 1999.

tistical components on a daily scale that can produce relatively complicated

seasonal statistics. For example, as long as the AR(1) shocks are stationary

over space, the entire daily model can be fit using standard geostatistical and

regression methods even if the original field (in this case standardized max-

imum 8-hour ozone levels) is nonstationary. Part of the success of the daily

model may be because much of the spatial correlation and the nonstationarity

of the raw measurements can be accounted for by standardizing the process

and building in a temporal evolution. While the seasonal model is much sim-

pler and easier to employ in general, it can actually be more complicated if

the FHDA field is not stationary.

The lack of long-range correlation structure in the FHDA field simulated
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by the daily model approach (conditional on the data) and reaffirmed by em-

pirical variograms of the observed FHDA field suggest that standard spatial

techniques may not be very effective at predicting the FHDA at locations

relatively far from any monitoring station. Fig. 4.21 contrasts the different

correlation scales among different transformations of the ozone field. Note the

marked difference between daily fields and the seasonal FHDA. This is further

justified by the greater standard errors of prediction found by both the sea-

sonal model and the thin plate spline at locations away from the monitoring

network. Additionally, the apparent correlation structure in the FHDA field,

found from using the daily model approach without conditioning on the data,

may be an artifact of the model. As hypothesized in section 4.4.1, one source

of model bias may be the lack of a more heavy tail distribution associated with

the AR shocks.
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Figure 4.21: Fitted empirical correlation functions for original daily maximum
8-hour average ozone measurements, the standardized daily values, the spa-
tial AR(1) shocks and unconditional (seasonal model) and conditional (daily
model) simulations of the FHDA field.



Chapter 5

Modeling the Air Quality

Standard Using Extreme Value

Theory

5.1 Spatial models for extremes

The analyses from Chapter 4 arrive at estimates of extreme properties of the

ozone monitoring data by a space-time model based on daily ozone measure-

ments. Most of the fitting is focused on mean and variance properties and the

distribution of the tails is partly constrained by the multivariate assumptions

made for the daily model. An alternative approach is to model the tail be-

havior of the station measurements directly. This can be achieved by fitting

an exceedance over threshold model (section 3.2.2), such as a GPD, for each

95
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station. However, the number of observations is small for any one station,

and one would expect significant uncertainty in the estimates because of too

few observations (exceeding the threshold). Also, without additional spatial

structure, the individual station models provide no obvious way to extrapolate

to locations where ozone is not measured.

One strategy to improve the accuracy and provide for spatial prediction is

to include a spatial component that links the distribution for different stations.

In this section, a hierarchical component is added that treats the parameters

of the GPD as a smooth surface. This device is not only reasonable given the

spatial dependence of the surface ozone, but also combines strength across the

stations to give a more stable estimate of the tail parameters. It should be

noted that in working through this example, there are several places where

simplifying assumptions in the model have been made that may have dubious

justification. Many of these could be avoided at the cost of more complex mod-

els, but some amount of simplicity is desired for comparison with the methods

presented in chapter 4. Here, the concern is in modeling the distribution of

Z(x), and not the joint distribution of Z(x) and Z(x′–the spatial component

is on the parameters of the GPD distribution.

5.1.1 Elements of a hierarchical model

Let xk k = 1, . . . , n represent the locations for the ozone stations, and y(x, t)

denotes the daily ozone at an arbitrary location x and day t. The goal is to
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estimate the surfaces σ(x) and ξ(x) that describe how the GPD parameters

change as a function of location. Based on these surfaces, the probability of

an extreme ozone event can be evaluated at any point in the region.

In terms of a hierarchical model, we assume that; conditional on the values

of σ(x), ξ(x) and threshold u; the exceedances of ozone at location x fol-

low a GPD. Denote the probability density function (pdf) of this conditional

distribution as

[y(x, t)|σ(x), ξ(x), u]. (5.1)

The next level in the hierarchy is a statistical model for σ(x), ξ(x) and u.

Denote the pdf for these components as

[σ(x), ξ(x), u|θ] (5.2)

In general, θ is a vector of hyperparameters controlling the distributions for

σ(x), ξ(x) and u, and the final stage in the hierarchy is a prior distribution

on θ (denoted [θ]).

Multiplying these pieces together gives the joint pdf

[y(xi, t)|σ(x), ξ(x), u] [σ(x), ξ(x), u|θ] [θ]. (5.3)

Here t (1 ≤ t ≤ T ) indexes the T days and i (1 ≤ i ≤ M) indexes the M

station locations.

For a formal Bayesian analysis, the specification of (5.3) is a complete recipe

for inference on the parameters. Using Bayes Theorem, the posterior for σ(x)

and ξ(x) given the data ([σ(x), ξ(x)|y(x, t), θ]) can, in principle, be computed.
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In particular, a useful summary of the posterior distribution is the combination

of parameters that has the highest probability given the observed data. This

combination is known as the posterior mode. It is an elementary fact that

the posterior mode can be found by maximizing the joint density in (5.3), and

this equivalence is used to find estimates of the surfaces of the parameters.

Although the basic outline of the Bayes analysis is clear, the details of the

model are important. Most practical applications require a balance among

the full richness of the hierarchical model,the limitations of the data and a

lack of detailed prior knowledge concerning hyperparameters. This is also

true of the analysis of the ozone data given in the next section.

5.1.2 Modeling assumptions for the ozone application

Under the assumption that the observations are conditionally independent over

both time and space, the joint distribution of parameters and data is

T,M∏
t=1,i=1

[y(xi, t)|σ(xi), ξ(xi), u] [σ(xi), ξ(xi), u|θ] [θ]. (5.4)

The assumption of conditional independence is a strong one, but can be justi-

fied because extreme values tend to be less correlated than more central parts

of a distribution. In particular, the results from simulating bivariate distri-

butions of the fourth-highest order statistic (section 4.4.3) suggest that the

spatial correlation of the FHDA is much weaker than the correlation among

daily ozone measurements.
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Finally, in order to give the specific form for the model in (5.3), it is helpful

to make several additional assumptions. Assume that u is specified, ξ(x) ≡ ξ

is a constant, and σ(x) is assumed to be a Gaussian random field with the

form

σ(x) = P (x) + e(x); (5.5)

where P is a fixed linear function, and e(x) is a mean zero spatial process

related to a Matérn covariance (Stein (1999)). P is known as the spatial

drift; and as a linear function, has three parameters that will be denoted by

the vector β. Creating a matrix with the constant and linear terms for the

observed locations, X, the spatial drift contribution to the scale parameter at

the stations is the vector Xβ.

Recall from section 3.1.1 that the Matérn family of covariance functions

(3.9) has three parameters: σ, ν and ρ. The full set of parameters would

be difficult to identify with the ozone data set, however, because there is

little prior knowledge of their values, and the data set is small. Given these

constraints, this analysis restricts ν to 2, and estimates the combination of

the scale and range parameters that describes how spatial correlations vary

for small distances. This function is referred to as the principle irregular

term (Stein [42] page 32), and the coefficient for this term is a combination

of σ2 and ρ. Here, denote this coefficient by λ. Note that λ is also the

smoothing parameter commonly used in penalized likelihood problems and for

splines. This approximation matches the spatial process model associated with
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a second order thin plate spline, and there is both heuristic and theoretical

support that the approximation provided with just this single parameter is

adequate.

The last component of the model is the specification of prior distributions

for ξ and the hyperparameters β, the spatial drift, and λ (i.e., θ = (ξ, β, λ) in

the previous section). A prior for these hyperparameters would lead to another

level of the hierarchy that is only indirectly related to the observed data.

Again, some simplifying assumptions based on practicality and the limitations

of the data are useful. Specifically, take an empirical Bayes approach by not

specifying priors; or, equivalently, assuming them to be improper and constant.

With this simplification, finding the posterior mode can be interpreted as

applying maximum likelihood to determine these parameters.

With all the assumptions included, the logarithm of the likelihood derived

from the joint distribution from (5.4) is given by

M∑
i=1

`GPD(Y i, σ(xi), ξ)−λ(σ−Xβ)T (K−1)(σ−Xβ)/2− log(|λK|)+C. (5.6)

Note that conspicuously absent are priors for ξ, β and λ. Here, the log-

likelihood, `GPD, is exactly the GPD log-likelihood with a fixed threshold of

u = 60 ppb described in section 3.2.2. Y i is the vector of ozone measurements

for the ith station, σ is the vector of scale parameters with ith element σ(xi),

K is the covariance for the scale parameters among the station locations and C

is a constant independent of the parameters. Because the data is conditioned

on σ, it is sufficient to find the maximum over this vector of parameters. The
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posterior mode for σ(x) at an arbitrary location can be approximated as the

conditional expectation of σ(x) given σ at the observed locations, and based

on the Matérn covariance for this surface. This estimate is not exact because

this simplification fixes the parameters of the covariance at their mode values.

For multivariate normal distributions, this conditional expectation is also the

well known kriging estimate from geostatistics, and it is common practice to

condition on the covariance parameters when forming a spatial estimate.

5.1.3 Posterior modes for the GPD

As an initial analysis and benchmark, the individual MLEs for each station

were found under the constraint that the shape is constant, but the scale pa-

rameter can vary. For this case, ξ̂ = −0.343 and the posterior mode surface for

the scale is plotted in Fig. 5.1 (a). The surface for the scale can be recovered

using a spatial statistics estimate that extrapolates from the estimates of σ at

the observed locations. Here, the spatial model assumed for σ is equivalent

to a thin plate spline, so the estimate of the surface simply involves an inter-

polation using standard spline algorithms. These results can be interpreted

as the limiting case when the parameter λ in (5.6) becomes very small. Al-

though the surface in Figure 5.1 (a) is a useful visual benchmark, it is not

believable because the surface interpolation assumes that each station’s GPD

parameters are known without error. In fact, it is known that there is sub-

stantial uncertainty in these individual estimates because of the small number
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of exceedances measured for each station.

The spatial analysis based on maximizing (5.6) combines information about

the GPD scale parameters across stations. Specifically, the combination de-

pends on the value of the smoothing parameter, λ. Because the mode is sen-

sitive to the value of λ, examination of the estimates for some fixed choices of

this parameter is prudent; and to be precise, let σ̂λ(x) and ξ̂λ be the parameter

values that maximize (5.6) for a fixed value of λ. The plots in Fig. 5.1 (b)-(d)

show the estimates of the σ̂λ(x) surface for different values of λ–ξ̂λ does not

vary significantly as a function of lambda. The sequence of surfaces illustrate

why this parameter controls the smoothing. As λ increases the surface tends

to be smoother; with fewer sharp features and less resolution. Because of the

linear spatial drift in the model, as λ increases, the surface will simplify to a

linear function; a plane.

Fig. 5.2 is a plot of the profile likelihood of log λ, and might be used to draw

inferences about values for this parameter. The increasing profile indicates

that the posterior is maximized for very large values of λ; and, in the limit,

describes a surface for σ that is simply a plane. The fitted plane in this case

has a small gradient and little variability over the data region.

Surprisingly, this result suggests that there is little evidence for spatial
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Figure 5.1: Estimated surfaces of the GPD scale parameter, σ̂(x), for different
values of the smoothing parameter, λ.

structure in the scale parameter surface. These results can be contrasted

with an ad hoc approach of smoothing the GPD MLEs directly. A simpler

approach, though lacking a rigorous statistical model, is to smooth the indi-

vidual estimates of the scale parameters at the locations using a thin plate

spline. Generalized cross-validation, a frequentist criterion for estimating λ,
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Figure 5.2: Profile likelihood for λ, the smoothing parameter for the surface
of scale parameters.

is used to select a value for smoothing that gives a surface similar to Fig. 5.1

(d). Note that the surface in (d) exhibits higher levels along the urban corri-

dor through North Carolina and Virginia, and levels are lower in more rural

areas such as Western Virginia. Although this interpretation is reasonable, it

is unclear how to reconcile this with the profile likelihood that suggest that σ
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has little spatial dependence.

Assuming that the intermediate value of λ depicted in Figure 5.1 (d) gives

a useful summary of the monitoring data, consider a more interpretable func-

tional of the GPD distribution. Recall that for meeting proposed EPA air

quality standards it is important that the FHDA fall below 84 ppb. Figure 5.3

(b) is the probability of the FHDA exceeding 84 ppb estimated from the spatial

GPD model. Here, the probability of a location exceeding the threshold of 60

ppb is estimated from a thin plate spline fit to the empirical probabilities from

each station. This quantity is ζu from Coles [3] section 4.3.2. The surface of

probabilities, ζu(x), is combined with the surface of scale and shape parameter

estimates to estimate the probability that daily ozone exceeds 84 ppb. Under

the assumption of independence between daily exceedances, the binomial dis-

tribution is used to calculate the probability that the FHDA exceeds 84 ppb

(i.e., four or more events out of 184). The surfaces in Figs. 5.3 through 5.7

show surprisingly similar results between (a) and (b), where (a) is the proba-

bility of FHDA exceeding 84 ppb using the daily model of section 4.1.2, and

(b) is the probability of daily ozone exceeding 84 ppb using model (5.4). In

each case, the surfaces indicate a broad region across the Southeastern United

States where there is high probability that the FHDA will exceed 84 ppb.

Areas of lower probability tend to be in more rural areas or at the edges of

this region. The 1998 and 1999 seasons show particularly high probabilities

across the entire region, except for the southern coast; this may be explained
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Figure 5.3: Probability of FHDA exceeding 84 ppb using (left) daily model of
section 4.1.2 and (right) daily ozone using model (5.4) for 1995.

by higher average temperatures in these summers for this region.
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Figure 5.4: Probability of FHDA exceeding 84 ppb using (left) daily model of
section 4.1.2 and (right) daily ozone using model (5.4) for 1996.

5.1.4 Extensions and discussion

There are several extensions to this work that could improve the model, or

give more accurate estimates. With more data, one could consider a more

flexible covariance model for σ, and add a spatial component for ξ. One way

to accumulate more observations is to extend the analysis over multiple years;

there are five years of data considered here for the daily model. One difficulty

with multiple years is that ozone levels would need to be adjusted by covariates

such as meteorology and time trends. Another extension is to include a link
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Figure 5.5: Probability of FHDA exceeding 84 ppb using (left) daily model of
section 4.1.2 and (right) daily ozone using model (5.4) for 1997.

function for σ, such as the exponential, in order to preserve positivity of σ,

and possibly to give a better approximation of a Gaussian field. Finally, by

adding proper priors to this analysis, it may be possible to sample from the

posterior to obtain a Monte Carlo approximation to the posterior distribution.

It should be noted that this method solves a much more general problem

than simply inferring properties of the NAAQS for ground-level ozone. There

are numerous datasets that could be analyzed with these methods for vari-

ous purposes. For example, for areas where flooding is of particular concern,

this model could be used to infer probabilities of extreme precipation events
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Figure 5.6: Probability of FHDA exceeding 84 ppb using (left) daily model of
section 4.1.2 and (right) daily ozone using model (5.4) for 1998.

in a way that incorporates spatial information. Of course, there are many

other problems where extreme events are of concern, and inclusion of spatial

information could be important.
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Figure 5.7: Probability of FHDA exceeding 84 ppb using (left) daily model of
section 4.1.2 and (right) daily ozone using model (5.4) for 1999.



Chapter 6

Conclusions

This thesis has addressed the statistical analysis of the ozone seasonal standard

based on a space-time model for daily daily data. This new model is given by

Y (x, t) = µ(x, t) + σ(x)u(x, t) (6.1)

with µ(x, t) and σ(x) as in (4.1), and u(x, t) as in (4.2).

Section 6.1 discusses details discovered in using this approach. Section 6.2

discusses the more direct model (chapter 5) that uses distributions found to be

appropriate for modeling extreme behavior, at least asymptotically. Finally,

section 6.4 gives some ideas for future work.

6.1 Daily Model Discussion

Although care is needed in generalizing results from a specific data set to other

cases, this work has shown a preference to analyze the FHDA standard using

111



112

a daily space-time model for ozone and then aggregating over the season to

infer the FHDA field. The results for the North Carolina study region show

that model (6.1) is competitive with the seasonal model in that, based on the

CV measures of RMSE, it is slightly more accurate. The next section details

the benefits of this approach.

Conceptually, the daily model has advantages in using fairly simple sta-

tistical components on a daily scale that can produce relatively complicated

seasonal statistics. For example, as long as a standard correlation function is

reasonable for ψ(d(x,x′)) from (4.4), the entire daily model can be fit using

standard geostatistical and regression methods even if the observed FHDA

field is nonstationary. I believe that part of the success of the daily model is

that much of the spatial correlation and the nonstationarity of the raw mea-

surements can be accounted for by standardizing the process and building in a

temporal evolution. Additionally, this standardization probably accounts for

the spatial trend better than the seasonal approach, and may explain the bet-

ter performance of the daily model. While the seasonal model is much simpler

and easier to employ in general, it can actually be more complicated if the

FHDA field is not stationary.

The lack of long-range correlation structure in the FHDA field simulated

by the daily model approach (conditional on the data) and reaffirmed by em-

pirical variograms of the observed FHDA field suggest that standard spatial

techniques may not be very effective at predicting the FHDA at locations rel-
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atively far from any monitoring station. Correlation scales contrasted among

different transformations of the ozone field (Fig. 4.21) displayed marked dif-

ferences between daily fields and the seasonal FHDA. Specifically, at about

100 miles the daily model FHDA fitted correlogram function shows nearly

zero correlation, whereas that of the seasonal model shows a correlation above

0.3. This is further justified by the greater MPSE found by both the seasonal

model (Fig. 4.16 (d) through 4.20 (d)) and the thin plate spline (not shown)

at locations away from the monitoring network. Additionally, the apparent

correlation structure in the FHDA field, implied by the daily model may be

biased because of the lack of a heavy tail distribution for the autoregressive

shocks.

One interesting and perhaps disappointing, finding in this work is that the

daily model prediction standard errors are generally too optimistic. I believe

this is because the daily is not able to account for occassional large ozone

values that appear in the data based on a Gaussian assumption at a daily

time scale.

Although this problem suggests ample areas of new research, I also believe

the daily model provides a substantial improvement in interpolating monitor-

ing data with respect to the regulatory standard. Moreover, this method is

easily implemented with supporting packages in the R [34] environment, and

so can be used by a broad group of scientists beyond statisticians.
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6.2 The Direct Extreme Value Model

Chapter 5 provided an introduction to incorporation of spatial dependence of

extreme value statistics, and then applied these ideas to the spatial example

drawn from the ozone dataset. Part of the interest here is to compare the re-

sults with the daily model that focuses on the central part of the distribution

of standardized ozone measurements. For interest only in the regulatory statis-

tic, the probability that the FHDA exceeds 84 ppb in a year is similar using

either the extremes or space-time modeling approach–at least for this study

region in 1995 through 1999. One interesting feature of this correspondence

is that the approaches are very different in character, and involve very differ-

ent assumptions. The extremes approach largely ignores temporal and spatial

dependence conditional on the parameters of the GPD, but is more flexible in

representing the larger values of observed ozone. The space-time approach is

a hierarchical model that represents the daily dependences of ozone over time

and its correlation over space, but it relies on normal distributions for the daily

distributions. The agreement between the surfaces in Fig. 5.3 suggests that

for both approaches the assumptions are reasonable.

6.3 Other Applications

It is important to note that while all of these models have been motivated by

the NAAQS for ground-level ozone, the problem solved for this standard is
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much more generally applicable. For example, the extreme value model could

be used to characterize extreme events for numerous other types of data, such

as extreme precipitation events, convective weather events, or occurrences of

health problems such as west nile virus to name only a few. There are also

other criteria pollutants that could benefit from either the extreme value model

or the space-time daily model. For example, particulate matter (PM) has a

similar standard to that of ozone that is based on a high percentile.

Additionally, both the space-time daily model and the extreme value model

can easily be modified to account for different standards. For example, if the

U.S. EPA decided to change the ozone standard to one based on a third-

highest value instead of the current fourth-highest value, it is a small matter

to take the third-highest value from Step 4 of the daily model algorithm. Of

course, any order statistic or quantile could be sampled in Step 4 providing a

great deal of flexibility in the daily model approach. This is also true for the

extreme value approach because the approach does not specifically rely on the

particular order statistic.

For the seasonal model approach, care should be taken to check that the

field is still multivariate Gaussian for other order statistics. It was found

here that the assumption that the field is, at least approximately, Gaussian is

reasonable for the fourth-highest order statistic field. However, this may not

be the case for other order statistics; especially for higher order statistics than

the fourth-highest.
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6.4 Future Work

Here, covariates have been only surreptitiously included in the daily model.

On a daily level, it is known that certain meteorological covariates are impor-

tant in the creation and transport of ozone–particularly temperature, cloud

cover and wind. Generally, meteorological data, such as temperature, are

difficult to use for the daily model approach because at any time point the

temperatures or wind vectors at two locations can vary greatly, and meteo-

rological measurements are generally gathered only on a coarse spatial scale.

Therefore, incorporation of such covariates becomes problematic. Two pos-

sible covariates, however, that could be incorporated more explicitly into the

daily model are elevation and aspect. In particular, it might be useful to use

these covariates when interpolating the autoregressive parameters spatially.

For the daily model, I have considered some parameter uncertainty in parts

of the model (the autoregressive parameters and parameters of the spatial

shocks covariance function), but have not propagated the uncertainty into the

FHDA fields. A fully Bayesian model could perhaps synthesize covariates,

model parameters, and any uncertainty associated with them elegantly, but at

the cost of much greater complexity and computational intensity. Note that by

varying the model parameters in the algorithm, one can include uncertainty

into the daily model analysis resulting from uncertainty in the parameters.

Although a fully Bayesian approach might provide a very elegant solution,
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bootstrapping is a good compromise in terms of less demands for new soft-

ware and computing resources; and scales to a larger area without further

complication. For example, one could use a parameteric bootstrap to generate

a sample of parameters that reflect the uncertainty (in a frequentist sense!)

with respect to the MLEs. These values would then be used to generate the

conditional FHDA fields.

There are many areas of extreme value statistics that need more statisti-

cal research; including algorithms to compute (or sample) posteriors from a

Bayesian analysis. A key step would be the ability to sample the surface of

GPD parameters from a posterior. This would allow for quantifying the uncer-

tainty in the estimated parameters and the subsequent quantities based on the

GPD; such as return times and exceedance probabilities. Despite many open

methodological questions, there is much benefit from an extremes perspective.

In particular, if one is interested in extreme events, it may be possible to

avoid some of the complexity of the spatial and temporal dependence that is

ordinarily associated with the majority of the measurements.

A primary direction for future work is to extend model (6.1) to the entire

Eastern United States. This project would produce an analysis comparable

to Fuentes’ [11] work. Initial results indicate that the deseasonalization pro-

cess, together with the autoregressive model, leaves a spatial shock field that

is approximately stationary even over this relatively large region. The non-

stationary model proposed by Fuentes [11] does not seem appropriate to use
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with model (6.1). Particularly, there are large regions where the spatial shocks

field appears to be homogeneous, with only small pockets (usually at higher

altitudes) where the field appears to be nonstationary. Because covariance

(3.40) fits covariances across entire regions, it is impossible to attend to only

small variations in the field. Additionally, this Fuentes covariance mixture

model assumes that fields around each node are orthogonal, or independent,

of each other; but if the field is actually stationary, then two fields would not

be independent. Therefore, this model does not handle the stationary case.

Furthermore, there are many parameters to be estimated; from the placement

and number of nodes, to the regional covariance models; which adds a new

level of complexity to the model that might not be worth the return. A bet-

ter choice would be one that fits covariances to individual stations as in the

Higdon [21] model, or the associated Paciorek [33] model. It should be noted

that covariance (3.42) is only defined for Euclidean distance. Although a sim-

ilar technique could be employed for spherical distances, it is not clear that a

closed form of the model could be obtained. A practical solution would be to

project coordinates to a 2 dimensional plane with the assumption that a rel-

atively small region on the Earth is well represented by a rectangular surface

patch.
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