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Abstract

SpatialVx is a software package written in R for performing spatial weather forecast
verification primarily on gridded verification sets (i.e., a gridded observation field com-
pared against a forecast field on the same grid). In a more general sense, sptial verification
is all about comparing spatial fields and has a broader application area, such as compar-
ing photographic images; though unique challenges in the realm of forecast verification
exist. Background on spatial verification methods is given along with a tutorial for the
key functions of the package. Beyond a description of the software, a look at some of the
many challenges associated with spatial verification is explored and key areas for further
statistical development are highlighted.

Keywords: SpatialVx, R, comparing spatial fields, spatial verification, image warping, cluster
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1. Introduction: Background on spatial forecast verification
Spatial forecast verification arose out of a need to provide consistent information about fore-
cast performance wtih an expert’s subjective opinion, as well as the need to provide meaningful
diagnostic measures and plots. In particular, as the grid resolution for weather forecasts be-
came increasingly fine, traditional grid-point-to-grid point verification techniques tended to
favor the coarser scale models (cf. Mass, Ovens, Westrick, and Colle 2002; Baldwin and Kain
2006). One reason for this phenomenon is the double penalty incurred for a single timing or
spatial alignment error. For example, the top left panel of Figure 1 shows an illustration of
a forecast feature that could represent a phenomenon of interest, such as a storm cell, that
perfectly matches the observed feature except that it is displaced spatially to where there
is no overlap between the two. Traditional verification measures will penalize this otherwise
perfect forecast once for all of the grid points over the observed storm cell (that do not overlap
with the forecast) and again for all of the grid points over that for the forecast (that do not
overlap with those in the observation).
Moreover, the top right panel of Figure 1, and the panel directly below it, will produce the
same traditional verification measures as the panel in the top left. Indeed, the panel in the
bottom of the figure may produce a better score than any of the other cases, with some of
the traditional measures, simply because it is the only one where the forecast feature overlaps
with the observed one. Subsequently, it was clear that there was a need for methods that
could provide more diagnostic information about how a forecast does well and how it performs
poorly. Such information must have the forecast user in mind as is illustrated in Figure 2.
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Figure 1: Illustration of some of the issues associated with traditional forecast verification
applied to high-resolution verification sets. Figure used by permission from Barbara G. Brown.

As high-resolution forecasts were developed and these issues of verification identified, a multi-
tude of methods were proposed. The rapid pace of development was spurred on in part because
of existing methods that had previously been developed in other application areas, such as
image analysis, computer vision and spatial statistics (see, e.g., Wikle, Zammit-Mangion,
and Cressie 2019). To make sense of the dizzying cornucopia of these new approaches, an
inter-comparison project, dubbed the ICP, was established (Gilleland, Ahijevych, Brown, and
Ebert 2010a). A major contribution of this project was the creation of a series of test cases
that could be used by method developers in order to test their methods against the wide
array of other approaches without the daunting task of having to duplicate these myriad,
often highly complex, methods.

The cases included contrived geometric shapes that were inspired by Figure 1 and are de-
scribed in Ahijevych, Gilleland, Brown, and Ebert (2009), as well as real and purturbed real
cases. A set of nine single-time-point snapshots of 24-h accumulated precipitation (the real
cases) from the 2005 Spring Experiment sponsored by the Storm Prediction Center (SPC)
and the National Severe Storms Laboratory (NSSL) included three competing forecast models
and one analysis field for each of the nine cases serving as the “observations" (see Kain, Weiss,
Bright, Baldwin, Levit, Carbin, Schwartz, Weisman, Droegemeier, Weber, and Thomas 2008;
Ahijevych et al. 2009, for more information about these cases). All of them are available
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Figure 2: Illustration of the need for user-specific diagnostic information beyond what a
traditional forecast verification measure can provide. The top left panel shows a forecast
and an observation feature. The two are similar in size and shape but do not overlap. Is
this forecast good? The answer may depend on the user. If the user is concerned about the
watershed shown in the top middle, then it is a very bad forecast as depicted on the top right.
On the other hand, a flight route planner might need to divert the route by the same amount
regardless of the spatial displacement error (bottom panel), making it a good forecast for this
purpose. Figure used by permission from Barbara G. Brown.

from the ICP website (https://projects.ral.ucar.edu/icp/) in ASCII format, including
a larger set of 32 real cases as analyzed in Davis, Brown, Bullock, and Halley Gotway (2009);
Gilleland, Lindström, and Lindgren (2010c); Gilleland (2013a, 2017, 2021). There is also an
R (R Core Team 2020) package called ICPtestcases available at this same website.1

A further product of the ICP was a special collection of papers in the Weather and Forecasting
journal (Ahijevych et al. 2009; Brill and Mesinger 2009; Casati 2010; Davis et al. 2009; Ebert
2009; Ebert and Gallus 2009; Gilleland, Ahijevych, Brown, Casati, and Ebert 2009; Gilleland
et al. 2010c; Keil and Craig 2009; Lack, Limpert, and Fox 2010; Lakshmanan and Kain 2010;
Marzban, Sandgathe, Lyons, and Lederer 2009; Mittermaier and Roberts 2010; Nachamkin
2009; Wernli, Hofmann, and Zimmer 2009). A major result of the project included a pre-
liminary classification of the methods into two categories, which were further divided into
two sub-categories each (Gilleland et al. 2009), namely: filtering, which can be subdivided
into smoothing (dubbed neighborhood methods) and spectral (dubbed scale separation), and
displacement, which can be subdivided into feature-based and field deformation methods. In-
dependently, Wealands, Grayson, and Walker (2005) proposed essentially the same methods
for spatial verification in the hydrology literature.
The ICP was focused on the central United States, which is an area known for severe storm ac-

1These cases were originally included in SpatialVx but needed to be removed because of changes in CRAN
policies on memory allocations.

https://projects.ral.ucar.edu/icp/
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tivity and is characterized by a large swath of relatively flat land. A second inter-comparison
project was subsequently introduced that aimed at testing the methods over central Europe,
which is characterized by complex terrain, in order to further test the methods; namely, the
Mesoscale Verification Intercomparison in Complex Terrain (MesoVICT Dorninger, Mitter-
maier, Gilleland, Ebert, Brown, and Wilson 2013) project. The cases for MesoVICT were
established over a tiered system going from the same types of simple snapshots as the ICP,
called the core case, to much more elaborate and realistic verification sets that included mul-
tiple variables beyond precipitation and weather systems that cover multiple days. These
cases are also available at the ICP website in ASCII format, with instructions for uploading
them into R. For more about MesoVICT and results from the project, see Dorninger et al.
(2013); Dorninger, Gilleland, Casati, Mittermaier, Ebert, Brown, and Wilson (2018); Gille-
land (2017, 2021); Mariani and Casaioli (2018); Radanovics, Vidal, and Sauquet (2018); Skok
and Hladnik (2017).
Spatial verification methods have also started to receive some attention in the climate lit-
erature as they present new, more physically meaningful ways to compare future climates
with past ones (e.g., Jun, Knutti, and Nychka 2008; Livina, Edwards, Goswami, and Lenton
2008; Moise and Delage 2011; AghaKouchak and Mehran 2013; Levy, Ingram, Jenkinson,
Huntingford, Hugo Lambert, and Allen 2013; Hobæk Haff, Frigessi, and Maraun 2015; Konca-
Kedzierska 2015). Other climate application areas include downscaling (e.g., De Haan, Kana-
mitsu, De Sales, and Sun 2015; De Sales and Xue 2010), identifying believable scales for
climate projections (e.g., Kwiotkowski, Halloran, Mumby, and Stephenson 2014), and identi-
fying model bias (Siongco, Hohenegger, and Stevens 2014; Yorgun and Rood 2014). In the
context of extreme values, the propinquity model introduced in Gilleland, Brown, and Am-
mann (2013)2 lends itself particularly well to spatial verification comparisons (e.g., Gilleland,
Bukovsky, Williams, McGinnis, Ammann, Brown, and Mearns 2016).

1.1. Other spatial analysis packages in R

Spatial analysis is a fairly broad topic that includes many types of applications. There are,
subsequently, many other spatial analysis packages available for R. Various methods and
classes for analyzing spatial data are provided by sp (Pebesma and Bivand 2005; Bivand,
Pebesma, and Gomez-Rubio 2013), while sf (Pebesma 2018) is a modern implementation
and standardization for some of sp, particularly for accessing vector data, that is supported
by the R Consortium (https://www.r-consortium.org). The package spacetime (Pebesma
2012; Bivand et al. 2013) further extends the methods and classes of sp to space-time data
analysis. The raster (Hijmans 2021) pacakge contains visualization and some image analysis
methodology.
Several geostatistical spatial analysis packages that are available in R contain a wide array of
spatial methods, such as spatial (available with base R; Venables and Ripley 2002),gstat (Gräler,
Pebesma, and Heuvelink 2016), fields (Nychka, Furrer, Paige, and Sain 2017), geoR (Dig-
gle and Ribeiro Jr. 2006), spBayes (Finley, Banerjee, and Carlin 2007; Finley, Banerjee,
and E.Gelfand 2015), ramps (Smith, Yan, and Cowles 2008), FRK (specifically for large
data sets; Sainsbury-Dale, Zammit-Mangion, and Cressie 2021; Zammit-Mangion and Cressie
2021), INLA (https://www.r-inla.org/; Rue, Martino, and Chopin 2009; Lindgren, Rue,

2The term propinquity model was introduced later. See http://n2t.net/ark:/85065/d7tm7f52 last down-
loaded on 1 March 2021.

https://www.r-consortium.org
https://www.r-inla.org/
http://n2t.net/ark:/85065/d7tm7f52
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and Lindström 2011; Lindgren and Rue 2015), and spatstat (Baddeley, Rubak, and Turner
2015).
Other geostatistical spatial packages in R include: RandomFields (for simulating spatial fields;
Schlather, Malinowski, Menck, Oesting, and Strokorb 2015; Schlather, Malinowski, Oesting,
Boecker, Strokorb, Engelke, Martini, Ballani, Moreva, Auel, Menck, Gross, Ober, Ribeiro,
Ripley, Singleton, Pfaff, and R Core Team 2022), SpatialExtremes (for analyzing extreme
values spatially; Ribatet 2020), CompRandFld (a set of procedures for using likelihood and
non-standard likelihood methods; Padoan and Bevilacqua 2015), geospt (analysis and design
of optimal sampling networks; Melo, Santacruz, and Melo 2012), rtop (interpolation for data
with irregular spatial support; Skoien, Bloschl, Laaha, Pebesma, Parajka, and Viglione 2014).
SpatialVx is more specifically aimed at making direct comparisons between two spatial fields
than any of these other packages. An exception is spatstat, and many of these functions
are directly imported to SpatialVx, but the specific purpose of verifying weather and climate
forecasts is unique to SpatialVx and therefore is much more specialized than any other package
to this author’s knowledge for this purpose.
Operational forecast verification requires considerable heavy lifting and an ability to work
with atmospheric data sets, such as GRIB files,3 as well as an ability to digest extremely
large files over many instances. Therefore, a software package meant for operational use
that included some of the new spatial methods was introduced, called the Model Evaluation
Tools (Brown, Jensen, Halley Gotway, Bullock, Gilleland, Fowler, Newman, Adriaansen,
Blank, Burek, Harrold, Hertneky, Kalb, Kucera, Nance, and Wolff 2021) and based in C++,
was developed. SpatialVx was originally developed for the personal use of the author in order
to be able to test the different approaches more easily. However, it became clear that there
was a demand for more research-oriented software, so SpatialVx was submitted to CRAN for
general use.

1.2. Package dependencies

SpatialVx depends on several packages and imports from several more, most notably, spat-
stat (Baddeley and Turner 2005; Baddeley et al. 2015) and smoothie (Gilleland 2013b). The
former includes considerable functionality for analyzing spatial fields and streamlined the
development of SpatialVx. The latter was originally a collection of functions included in Spa-
tialVx but was ultimately made into its own package because these functions are useful more
generally than in comparing spatial fields; it contains functions for executing spatial convo-
lution filters using the fast Fourier transform, including a collection of kernel choices. The
package fields (Nychka et al. 2017) is also used extensively because it provides complementary
spatial analysis routines to those in spatstat along with other useful tools.
The other dependencies are smatr (Warton, Duursma, Falster, and Taskinen 2012) for ana-
lyzing some feature-based properties, and turboEM (Bobb and Varadhan 2020) for improving
the computational efficiency with the Gaussian Mixture Model method’s estimation (Laksh-
manan and Kain 2010). The imported packages are distillery (Gilleland 2020a,b, primarily
for some useful method functions), maps (Becker, Wilks, Brownrigg, Minka, and Deckmyn
2018, for the ability to add maps to graphics), boot (Canty and Ripley 2020; Davison and
Hinkley 1997), CircStats (Lund and Agostinelli 2018), fastcluster (Müllner 2013) and waves-

3See https://www.cpc.ncep.noaa.gov/products/wesley/reading_grib.html (last downloaded on 4
March 2021) for more information on GRIB files.

https://www.cpc.ncep.noaa.gov/products/wesley/reading_grib.html
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lim (Whitcher 2020).

1.3. Scope of this tutorial

There is a wealth of functionality in SpatialVx for instigating use of several of the proposed
methods. For this treatment, however, only a relatively small subset of the more mature
functions is addressed, as well as some lesser developed functions that help to shed light
on specific challenges, as well as circumstances to consider when verifying high-resolution
verification sets. For a complete summary of the functions included in the package, see https:
//projects.ral.ucar.edu/icp/SpatialVx/ (last downloaded on 4 March 2021) under the
“Contents" tab.
Conspicuously absent from this document are the filter-based methods. The function hoods2d
provides many of the “neighborhood" sub-category of these methods (see Ebert 2008, for a
thorough review of these methods). The help file (use ?hoods2d) should prove adequate for
learning how to apply this function, particularly after reading Sections 2 and 4 here.
Wavelet methods that were proposed early on (Briggs and Levine 1997; Casati, Ross, and
Stephenson 2004; Casati 2010) are available through the functions waverify2d and waveIS,
which make heavy use of waveslim (Whitcher 2020).4 Weniger, Kapp, and Friederichs (2016)
provide a thorough review of these and other wavelet methods, as well as introducing a new
method (see also Buschow, Pidstrigach, and Friederichs 2019; Buschow and Friederichs 2021;
Brune, Buschow, and Friederichs 2021). SpatialVx does not currently contain any newer
wavelet methods that have been proposed.
The presentation, here, follows a path beginning with field deformation, specifically image
warping, in Section 3. These capabilities are limited in SpatialVx but are nevertheless useful
for understanding some of the issues invovled with all methods. Section 4 continues with
the displacement-based topic to the feature-based setting. The first feature-based approach
follows logically from the discussion of image warping as it can be seen as a crude version of
the methodology, although it is considerably more flexible and can provide a wealth of other
information. The next logical step goes from the rather complicated displacement-based
approaches to the remarkably simple spatial alignment, or spatial dissimilarity, measures in
Section 5. This topic is followed by the closely related field qualities in Section 6, which also
present simple summaries but only over individual fields, rather than comparing one field to
another directly; variograms are also discussed in this section. The tutorial then considers
some more advanced topics, such as the spatial prediction comparison test (Section 7), ideas
for analyzing performance using the bearing along with other previously discussed measures
in conjunction with circle histograms as well as an approach to point-to-grid verification
(Section 8).

1.4. Overview of SpatialVx

As detailed in Section 2 below, the main class in SpatialVx is a list object containing the
verification set dubbed "SpatialVx". The original intention was to have every function work
on this class object in order to simplify code, and much of the functionality in the package
works this way. Some newer functions, and some less used functions, do not always use
this class of function, and some allow for both this class of object and using pairs of matrices

4Again, the help files for these functions should suffice for learning how to apply these functions.

https://projects.ral.ucar.edu/icp/SpatialVx/
https://projects.ral.ucar.edu/icp/SpatialVx/
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separately. For the most part, however, the main methods of SpatialVx work on "SpatialVx"
class objects. Therefore, it is a good idea to first learn how to set up this type of object (see
Section 2).
This document follows a path of logic for verifying weather forecasts that begins with the
“obvious" choice and why this choice may not be ideally suited to the task, and leads through
different alternatives of varying complexity. While there are main functions for each broad
category of spatial verification, the main functions for this author’s recommended methods
include:

1. Spatial dissimilarity measures: locmeasures2d calculates several of the spatial dissimi-
larity measures from Baddeley (1992a,b), as well as Gbeta and TheBigG for the new dis-
similarity measures proposed by Gilleland (2021); the former operates on "SpatialVx"
objects while the latter are newer and do not yet operate on these objects, as they will
at some point be folded into loceasures2d.

2. Feature-based methods: FeatureFinder for identifying connected components within
a field, centmatch, deltamm and minboundmatch for pairing identified features within
and across fields, as well as a host of functions for analyzing features either individ-
ually or for paired features: FeatureAxis, FeatureComps, FeatureMatchAnalyzer,
FeatureProps, FeatureTable, and interester. The initial FeatureFinder function
works on "SpatialVx" objects and outputs an object of class features while the pair-
ing functions work on the output of this function which inherits some information from
the original object. Subsequent analysis functions work on either the output from
the pairing functions or FeatureFinder depending on whether they require features
to be paired or not; e.g., FeatureAxis and FeatureProps work on features objects
directly, whereas FeatureComps, FeatureMatchAnalyzer, and FeatureTable work on
"matched" objects that are output by the pairing functions. The function interester
follows the methodology of Davis, Brown, and Bullock (2006a) in pairing and summa-
rizing features, so works on "features" objects.

3. The geometric indices proposed by AghaKouchak, Nasrollahi, Li, Imam, and Sorooshian
(2011) are carried out by: Cindex, Sindex, Aindex. Because these indices work on
individual fields, rather than comparing fields directly, they do not work on "SpatialVx"
objects.

4. The spatial prediction comarison test proposed by Hering and Genton (2011) is carried
out by: lossdiff, empiricalVG and flossdiff. These newer functions do not work
on "SpatialVx" class objects.

2. Notation and main example data
To be consistent with the argument nomenclature of SpatialVx functions, let X denote the
observed field and X̂ that of the forecast. Because they are spatial fields, let s = (x, y) ∈ D,
where D is the spatial domain and s represents the coordinates for a grid point. Often binary
images need to be created from the X(s) and X̂(s) fields. Denote the binary fields by IX(s)
and IX̂(s), respectively.
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The shortest distance from a grid point s to the nearest point belonging to a set of points
A ⊂ D is of particular interest and is denoted by d(s, A). A distance map provides d(s, A) at
every point s ∈ D, and the existence of fast compuational algorithms allows these maps to be
obtained quickly even for the very large domains encountered in weather forecast verification.
All distance maps employed in SpatialVx use the function distmap from spatstat. Most of
the methods in Section 5 are computed using these maps, as well as the minimum separation
distance in Section 4.1.
One dataset from the ICP that remains included with SpatialVx is the 1 June 2005 case. This
case was the primary case employed by many of the method developers. It consists of the
Stage II analysis product as the “observed" field along with three models denoted wrf4ncar,
wrf4ncep and wrf2caps. Several of the functions in SpatialVx operate on a special class of
object that is created with the make.SpatialVx function.

R> data( "obs0601" );
R> data( "wrf4ncar0531" );
R> data( "wrf4ncep0531" );
R> data( "wrf2caps0531" );
R> data( "ICPg240Locs" );
R> loc <- ICPg240Locs;

R> hold <- make.SpatialVx( obs0601, list( wrf4ncar0531, wrf4ncep0531, wrf2caps0531 ),
+ loc = loc, projection = TRUE, map = TRUE, loc.byrow = TRUE,
+ field.type = "Precipitation", units = "mm/h",
+ data.name = "ICP real case valid 1 June 2005 0 UTC",
+ obs.name = "Stage II analysis",
+ model.name = c( "Model 1", "Model 2", "Model 3" ) );

R> data( "obs0601" );
R> data( "wrf4ncar0531" );
R> data( "wrf4ncep0531" );
R> data( "wrf2caps0531" );
R> data( "ICPg240Locs" );
R> loc <- ICPg240Locs;

R> hold <- make.SpatialVx( obs0601, list( wrf4ncar0531, wrf4ncep0531, wrf2caps0531 ),
+ thresholds = c( 0.1, 2.1, 5.1, 20.1 ),
+ loc = loc, projection = TRUE, map = TRUE, loc.byrow = TRUE,
+ field.type = "Precipitation", units = "mm/h",
+ data.name = "ICP real case valid 1 June 2005 0 UTC",
+ obs.name = "Stage II analysis",
+ model.name = c( "Model 1", "Model 2", "Model 3" ) );
R>
R> lr <- apply( loc, 2, range );
R> l <- list( lon = matrix( loc[, 1], 601, 501, byrow = TRUE ),
+ lat = matrix( loc[, 2], 601, 501, byrow = TRUE ) );
R> zl <- range( c( c( obs0601 ), c( wrf4ncar0531 ), c( wrf4ncep0531 ),
+ c( wrf2caps0531 ) ), finite = TRUE );
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R> library( "colorspaces" );
R> cl <- c( gray( seq( 1, 0,, 8 ) ), sequential_hcl(16, palette = "Hawaii") );
R> par( mfrow = c(2,2) );
R> map( type = "n", xlim = lr[,1], ylim = lr[,2], xlab = "", ylab = "" );
R> poly.image( l$lon, l$lat, obs0601, col = cl, zlim = zl,
+ xlab = "", ylab = "", axes = FALSE, add = TRUE );
R> map( database = "state", add = TRUE );
R> map.axes()

R> map( type = "n", xlim = lr[,1], ylim = lr[,2], xlab = "", ylab = "" );
R> poly.image( l$lon, l$lat, wrf4ncar0531, col = cl, zlim = zl,
+ xlab = "", ylab = "", axes = FALSE, add = TRUE );
R> map( database = "state", add = TRUE );
R> map.axes()

R> map( type = "n", xlim = lr[,1], ylim = lr[,2], xlab = "", ylab = "" );
R> poly.image( l$lon, l$lat, wrf4ncep0531, col = cl, zlim = zl,
+ xlab = "", ylab = "", axes = FALSE, add = TRUE );
R> map( database = "state", add = TRUE );
R> map.axes()

R> map( type = "n", xlim = lr[,1], ylim = lr[,2], xlab = "", ylab = "" );
R> poly.image( l$lon, l$lat, wrf2caps0531, col = cl, zlim = zl,
+ xlab = "", ylab = "", axes = FALSE, add = TRUE );
R> map( database = "state", add = TRUE );
R> map.axes()
R> image.plot( obs0601, legend.only = TRUE, horizontal = TRUE, col = cl,
+ zlim = zl, legend.mar = 32 );

Figure 3 shows the resulting graphics displayed from the poly.image (from package fields;
Nychka et al. 2017) and map (from package maps; Becker et al. 2018) lines above. Calling map
first sets up the device so that the correct spatial aspect ratio will be graphed, poly.image
allows for maintaining the grid projection (note the use of longitude and latitude coordinate
matrices in its call) and image.plot adds the color legend bar. While none of these functions
is from package SpatialVx, it is often useful to be able to make these types of graphs when
evaluating high-resolution verification sets, and it is not obvious how to make them. Subjective
evaluation by the human eye is culpable of biased judgment (see, e.g., the subjective evaluation
of the nine ICP real cases in Ahijevych et al. 2009). Choice of color scheme (see cl assignment
above) can greatly influence subjective assessments. Here, the colorspace package (Zeileis,
Fisher, Hornik, Ihaka, McWhite, Murrell, Stauffer, and Wilke 2020) is used, which includes
several color schemes that are designed to be easier for the human eye to differentiate (see
Stauffer, Mayr, Dabernig, and Zeileis 2009, for information on color choices for meteorological
variables). However, other factors beyond color can be important, as well. In particular, the
range of values in this example is large, reaching around 120 mmh−1 but very few values
exceed, e.g., 20 mmh−1. The zlim argument can be adjusted to focus in on lower (or higher)
values. However, in the present example, the spatial domain is very large and the precipitation
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Figure 3: ICP real case for 1 June 2005. Top left is the Stage II analysis, top right is wrf4ncar,
bottom left is wrf4ncep and bottom right is wrf2caps. Variable is precipitation (mmh−1).

areas are relatively small, making it difficult to see these important features in the maps.

3. Field deformation
In terms of applying a grid-point-by-grid-point error summary that makes sense for high-
resolution model verification, the most natural choice is to employ a field deformation ap-
proach. The methodology accounts for both intensity and displacement errors simultaneously,
and information about the amount of deformation can supplement, or be included with, sum-
maries of the intensity errors. The percent reduction in intensity error can also be of inter-
est. Ebert and McBride (2000) proposed a particularly appealing breakdown of error into
components pertaining to displacement, volume and shape, as well as total error.5

In fact, some of the earliest proposed methods belonged to the deformation category (e.g.
Sampson and Guttorp 1992; Hoffman, Liu, Louis, and Grassoti 1995; Nehrkorn, Hoffman,

5Their method is a feature-based approach with a translation-only deformation on individual features
matched between fields via a proximity rule.
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Grassotti, and Louis 2003), although none of them explored the idea in any detail. Keil and
Craig (2007, 2009) proposed a pyramid-scheme deformation approach, analogous to a wavelet-
type decomposition, that results in simple summary measures that combines the amount of
deformation with the intensity errors. SpatialVx includes only very limited functionality
for performing deformation verification: the optical flow procedure6 proposed by Marzban
and Sandgathe (2010) and the image warping approach of Gilleland et al. (2010c). The
former is only applicable when the forecast is nearly identical to the observation field. The
latter requires numerically optimizing over many parameters and subsequently requires highly
accurate initial values.
Only a brief example of image warping (Dryden and Mardia 1998) in SpatialVx is given in
order to facilitate a comparison of the other methods discussed here because the optimization
for this method using this package is difficult, so not generally recommended. The image
warping model is given by X(s) = X̂(W(s)) + ε = X̂(Wx(x, y),Wy(x, y)) + ε(s), where W
represents the warping function whose parameters consist of control points (aka landmarks)
and ε is additional error.7 For the thin-plate-spline image warp procedure included with
SpatialVx,

Wx(x, y) = ax,0 + ax,1 · x+ ax,2 · y +
nc∑

i=1
dx,i · U(∥pX,i − (x, y)∥), (1)

where pX,i is the i-th control point for X(s), called the zero-energy control points, U(r) =
r2 log r,

∑nc
i=1 dx,i =

∑nc
i=1 x · dx,i =

∑nc
i=1 y · dx,i = 0. The definition for Wy(x, y) is similar.

The control points for X̂(s) are the parameters and are given by pX̂,i, i = 1, . . . , nc, where
nc is the number of control points. The value of nc must be chosen a priori by the user.
The larger nc is, the more intricate the warp will be, and the more difficult it will be to
estimate. The estimates for pX̂,i, called the one-energy control points, are obtained through
numerical optimization of a likelihood, or other objective function. The default objective
function is a simple sum of squares but other choices include a likelihood that assumes a
Gaussian distribution for ε(s) = X̂(s) − X(s), (use lossfun = "Qgauss" and grlossfun =
"defaultQgauss"), as well as a Gaussian mixture as employed by Gilleland et al. (2010c)
(use loss = "Qnonzero" and grlossfun = "defaultQnonzero"); more advanced users can
write and use their own loss functions to use with the lossfun and grlossfun arguments.
The parameters ax,0, ax,1, ax,2, dx,1, . . . , dx,nc , ay,0, ay,1, ay,2, dy,1, . . . , dy,nc are derived from the
resulting control points and bending energy matrix, from which the minimum bending energy
can be derived (see Gilleland, Chen, DePersio, Do, Eilertson, Jin, Lang, Lindgren, Lindström,
Smith, and Xia 2010b, for more details).8

In image analysis, these landmarks are readily identifiable. For example, a portrait of a
person will include such landmarks as the point of the nose, the ends of the lips, the top
of the forehead, etc. For a field consisting of an atmospheric variable, however, landmarks
are not as easily come by. Therefore, they must be estimated and for a large field, typically
nc ≈ 200 must be found (Gilleland et al. 2010c). Subsequently, it is a challenging optimization

6This code, called OF, was contributed to SpatialVx by Caren Marzban.
7The specific distribution for ε(s) depends on the modeling assumptions, which will vary depending on the

field variable of interest. This model is not the only possible choice but represents the basic idea in its simplest
form.

8The bending energy is a measure of the amount of non-linear deformation required to map the zero-energy
control points to the one-energy counterparts.
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Figure 4: Illustration of the C1 and C6 comparison from Gilleland et al. (2020). Top left
shows C6, top middle C1 and top right shows the two super-imposed on top of each other.
The bottom row represents three sensible possibilities for deforming the C1 field to better
match the C6 field. The first simply translates C1 up to be perfectly aligned with the top
circle in C6 and the second translates down to match the lower circle of C6. Finally, the third
scenario stretches C1 in order to overlap with both of the C6 circles; a more intricate warp
might use additional control points to also try to squeeze the resulting ellipse in the middle
so as to reduce the non-overlapped part between the two circles of C6.

problem and the function warper, which does the heavy lifting, requires very precise initial
values.
Figure 4 illustrates one challenge with any displacement method applied to meteorological
fields. In this scenario, the gold circle (C1) perfectly matches each of the two purple circles
(C6) and each purple circle is translated by the same amount from the gold circle but in
different directions. A simple translation up (bottom left) or down (bottom middle) make for
two different deformations that result in the same amount of displacement and reduction in
error so that there is not a unique deformation that is optimal.
On the bottom right of the figure, another possible deformation tries to overlap the gold circle
with both purple circles. It might be argued that this deformation is less ideal than the first
two but with more control points it migth be possible to better approximate the purple circles
using only the one gold circle. The result could be a much better reduction in error but is
at the expense of greater displacements and bending energy. Determining which of these, or
other possible deformations, is ideal may not always be possible. Operationally, there would
be no way to know if resulting deformations are sensible or not, or meet user needs. That is
not to say that the method cannot be useful in this setting but these types of challenges must
be understood.
Figures 5 and 6 demonstrate two different image warps applied to the ICP geometric observed
case against the fourth forecast. The former re-scales the fourth forecast (the correct defor-
mation) and the latter applies a rotation. Both result in about the same reduction in error
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Figure 5: Example of an image warp applied to the verification set including the observed
ICP geometric cases and its fourth “forecast." The transformation is a scale transformation
along with a translation to the left.

(≈ 57% and 62%, respectively) and both have similar amounts of deformation. Note that
these deformations involve only four control points that “control" the entire fields’ deforma-
tion.
These figures can be approximately reproduced with the following code. As mentioned above,
the main function for performing image warping, warper, requires a very good initial guess.
Therefore, iwarper is used, which allows the user to interactively select the control points.
The printout gives the estimates of the parameters in Eq (1) in addition to the original
root-mean square error (RMSE0) and the resulting RMSE1 obtained after deforming the
forecast field, as well as the percent reduction in error (RMSE0 − RMSE1)/RMSE0 · 100%.
The parameters dx,1, . . . , dy,nc would be too numerous to display in the printout but are
summarized through the minimum bending energy term that is displayed.
The following code can be used to approximately reproduce Figures 5 and 6. It is approximate
because the user must select the control points by hand. That is, once iwarper is called, an
image of the observed field will appear and the user is prompted to select the zero-energy
control points, which is carried out by clicking on the image wherever a control point is desired.
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Figure 6: Same as Figure 5 except a different deformation is applied. In this case, the
transformation is a rotation along with a translation to the left.

After nc points are selected (in this case, the default of four points), then the forecast image
is drawn and the user is again prompted to select the one-energy control points. Once they
are selected, the additional images are drawn. X is considered the zero-energy field because
it is not deformed and X̂ the one-energy field because it is deformed. Figure 7 demonstrates
how the control points can be chosen to enact the scale change v. rotation transformations.
Note that when the “observed" image is drawn a light dashed contour of the forecast image
is also displayed to aid in choosing potential control points (similarly for when choosing the
forecast control points).

R> library( "SpatialVx" );
R> library( "ICPtestcases" );

R> data( "geom000" );
R> data( "geom004" );
R> look <- iwarper( x0 = geom000, x1 = geom004 );
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Figure 7: Illustration showing approximate chosen control points to enact the scale (cf. Fig-
ure 5) v. rotation (cf. Figure 6) transformations for the fourth ICP geometric case compared
against the “observation." Left vertical ellipses represents the “observation" and the right hor-
izontal represents the “forecast."

R> look <- warper( Im0 = geom000, Im1 = geom004, p0 = look$p0, init = look$p1,
+ s = cbind( rep( 1:601, 501 ), rep( 1:501, each = 601 ) ) );
R> plot( look, col = cl );
R> summary( look );

RMSE0 RMSE1 % RMSE Reduction intercept(x)
13.83465109 5.22889319 62.20437252 -424.73336838

a_x(x) a_x(y) intercept(y) a_y(x)
3.30560675 -0.01051766 187.46472674 -0.11732001

a_y(y) Bending Energy
0.34903801 0.04662763

Clearly, the image warping code available in SpatialVx is not highly evolved. However, there
are situations when only a few fields need to be deformed and a by-hand approach can be
taken, which along with some trial-and-error can lead to good deformations (see, e.g., Gilleland
et al. 2016, who apply this by-hand approach on simulated fields from a propinquity model
approach to compare future (modeled) climates to present (modeled) climates). Moreover,
iwarper can be highly useful in understanding how different control point configurations lead
to particular deformations and thereby lead to a greater understanding of the image warping
method.

4. Feature-based Applications
Feature-based methods are closely linked with field deformation methods as both directly
account for the spatial displacement, or misalignment, of the field variable. As already men-
tioned, the approach of Ebert and McBride (2000) applies field deformation to individual
feature pairs.9 The Structure Amplitude Location (SAL) approach introduced by Wernli,

9This method is not currently available in SpatialVx.
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Paulat, Hagen, and Frei (2008) summarizes performance distributionally using individual
features. The cluster analysis approaches of Marzban and Sandgathe (2006) and Marzban
and Sandgathe (2008) can be considered to be feature-based methods.10

With any of the feature-based methods, features within the fields need to be identified. The
method employed for identifying features in SpatialVx uses functions from spatstat to identify
connected components. A connected component is derived from a binary field whereby a grid
point is connected to another grid point if the two are adjacent and both have value one. They
are sometimes called isolated clusters (e.g. AghaKouchak et al. 2011) and are characteristic
of contiguous “blobs" within a field.

4.1. Method for Object-based Diagnostic Evaluation (MODE)

The Method for Object-based Diagnostic Evaluation (MODE; Davis et al. 2006a; Davis,
Brown, and Bullock 2006b; Davis et al. 2009)11 can be thought of as a brute-force field
deformation approach because after identifying individual features in each field, a type of
cluster analysis is performed in order to (i) possibly merge features within a field, and (ii)
match features between the fields, and a fuzzy-logic algorithm then provides a summary of
the amount of “deformation" and intensity errors. The intensity errors are determined, for
example, using the upper quartile of intensities within features. The interester function
from SpatialVx will carry out this fuzzy-logic algorithm.
There are three main steps involved with MODE and each step has possible alternative
methods for carrying them out. SpatialVx is written to allow for considerable flexibility for
these steps, and allows advanced users to easily write their own routines for a particular step
and seemlessly incorporate them into the broader methodology. These main steps are:

1. Identify features within each of the fields, X(s) and X̂(s).

2. Merge features within each of X(s) and X̂(s) and/or match these features between the
two fields.

3. Analyze the features either individually for each field or by comparing matched features.

Step 2 could be considered to be two steps, 2a (merge) and 2b (match), but both are optional
depending on the user’s goals, and in some cases the two are performed simultaneously, as with
the method for merging and matching features proposed by Gilleland, Lee, Halley Gotway,
Bullock, and Brown (2008). The last step again depends on the specific user’s goals as to
whether a direct comparison between the fields is desired or not, or whether there is any
benefit to a distributional type of assessment of each field on its own.
There is one function, called FeatureFinder, for identifying features with SpatialVx but it is
highly flexible and allows for employing the method introduced in Davis et al. (2006a), Wernli
et al. (2008), Nachamkin (2009) and Lack et al. (2010). Additionally, it is possible to remove
features that are too large, in case only small-scale features are of interest, or to separate out
the small from the large features in an analysis.

10The function clusterer performs the method of Marzban and Sandgathe (2006) and CSIsamples performs
the one from Marzban and Sandgathe (2008). The latter of which was contributed by Caren Marzban. Both
utilize functions from fastcluster for computational efficiency.

11Note that the term “feature" is often referred to as “object" in the literature. In order to avoid confusion
with an R object, the term “feature" is used here.
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There are four functions available for step 2: (i) centmatch, which employs the centroid-
distance procedure of Davis et al. (2006a), (ii) deltamm, which applies the procedure proposed
by Gilleland et al. (2008), (iii) minboundmatch, which takes a nearest boundary approach as
proposed by Ebert and McBride (2000), and (iv) MergeForce is not a merging function itself
but solves a consistency issue with these other functions. That is, consistent with Davis et al.
(2006a), centmatch only supplies implicit merges but does not actually merge the features
within the resulting R object. In this case, MergeForce produces an R object with the
features fully merged. For deltamm, the cluster-analysis type of approach originally propsed
stops short of making a second pass for computational efficiency reasons. Here, MergeForce
makes a second pass in order that features that are merged in one field can be matched with
features that have been merged in the other.
There are six functions available for step 3. The first, interester mentioned above, per-
forms the fuzzy-logic interest summary of MODE. FeatureTable uses features to produce
contingency-table summaries along the traditional verification lines as proposed by Davis
et al. (2009). FeatureMatchAnalyzer and FeatureComps compute several feature-comparison
summaries for matched features, including: (i) centroid distance, (ii) difference in orientation
angles, (iii) area ratio, (iv) intersection area, (v) bearing from the forecast feature to that of the
observed, as well as (vi) several binary image metrics discussed in Section 5. FeatureProps
calculates properties12 of individual features, such as centroid, area, major axis angle (using
smatr) and intensity.
Some SpatialVx functions utilize a special object class called "SpatialVx" which simplifies
coding for the user in some cases; usually x is the main argument in this case. Other functions
operate on individual matrices, when X and Xhat are the arguments. In some cases there is a
method function for both possibilities. FeatureComps works on a specific type of list output
from solutionset of spatstat, allowing users to work more directly with feature comparisons
while FeatureMatchAnalyzer works on output from functions like centmatch and deltamm.
Generally, functions in the first step work on "SpatialVx" objects, which can be created using
make.SpatialVx, and return an object of class "features" that functions from subsequent
steps can work on. In a similar fashion, functions from step 2 return objects of class "matched"
that functions from step 3 can work on. This approach allows one function to take output
from functions in the previous step without having to continually pass some of the arguments;
these arguments are passed through the objects. This approach simplifies coding for the user
and also allows avanced users to write alternative functions in any of the steps in such a way
that the output can be used by existing functions in the other steps, provided the user is
careful to output the right type of object(s) from their own function(s).
The following code demonstrates how to do MODE-type analyses in SpatialVx using the 1
June 2005 real case from the ICP.

R> look <- FeatureFinder( hold, smoothpar = 10.5, thresh = 5 );
R> plot( look );

Figure 8 displays the graphic produced from the above plot command.

R> summary( look );
12Davis et al. (2006a) refer to “properties" as “attributes." The latter term is avoided here in order not to

confuse the reader with the R term “attributes," which refers to a specific mechanism used with an R object.
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Figure 8: Features identified using a convolution (disc kernel) radius of 10.5 grid points with
a threshold of 5 mmh−1. Features are not merged or matched at this stage.

Verification field ( ) feature properties:
centroidX centroidY area OrientationAngle AspectRatio Intensity0.25

[1,] -103.85129 39.82223 1312 63.64260 0.7393909 1.270
[2,] -101.66652 39.36492 390 51.09303 0.4864862 4.826
[3,] -100.16017 38.33127 12 138.25012 0.8471362 3.810
[4,] -93.69013 38.67983 61 140.22244 0.8515019 5.080
[5,] -90.58927 36.35705 186 138.09386 0.8732308 7.112

Intensity0.9
[1,] 47.6758
[2,] 17.0434
[3,] 4.3180
[4,] 13.9700
[5,] 11.9380

Forecast field ( ) feature properties:
centroidX centroidY area OrientationAngle AspectRatio Intensity0.25
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[1,] -107.61698 38.24863 145 45.38543 0.8634194 3.810
[2,] -105.96166 38.97449 498 53.92560 0.8274923 1.016
[3,] -101.36072 38.86168 1371 41.92198 0.4833802 3.556
[4,] -100.93799 39.12403 230 40.26762 0.9370622 4.318
[5,] -94.52596 37.85652 1842 15.17204 0.2746186 3.810
[6,] -90.65989 38.94111 338 135.11026 0.8789192 3.302

Intensity0.9
[1,] 26.3144
[2,] 36.4744
[3,] 20.8280
[4,] 20.8280
[5,] 19.8120
[6,] 21.9964

R> look;

FeatureFinder(object = hold, smoothpar = 10.5, thresh = 5)
[1] "ICP real case valid 1 June 2005 0 UTC\nPrecipitation (mm/h)"
[1] "ICP real case valid 1 June 2005 0 UTC"
[2] "Stage II analysis"
[3] "Model 1"
[1] "convthresh"
[1] "Convolution Threshold"

5 Stage II analysis features identified.
6 Model 1 features identified.

The summary method function for "features" objects produces statistics on the individual
features identified in each field using the terminology of “verification" field to mean the “ob-
servation" (in this case the Stage II analysis product). In particular, it provides the centroid
coordinates, area (in grid points squared), orientation angle (in degrees), aspect ratio, and
the lower quartile and 0.9 quantile of precipitation amount within each feature.
The next line of code calls the print method function for "features" objects. The output
gives useful information about the object, including the original function call, the observation
and forecast field names (as input to make.SpatialVx), the name for the feature identifica-
tion method used (here, the default convolution threshold approach), as well as the number
of features identified in each field. Five “observed" features are identified and six forecast
features. The threshold choice of 5 mmh−1 leaves only fairly intense precipitation amounts so
that the feature sizes are relatively small relative to the size of the domain but clearly from
Figure 8, the first model mostly over forecast these areas of intense precipitation, particularly
in eastern Kansas and Nebraska.
The next step of a MODE-type of analysis is to merge features within each field and/or
match them between fields. The following code enacts the method proposed by Gilleland
et al. (2008). The first step will take some time to compute so setting the verbose argument
to TRUE will display its progress to the screen.
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R> look2 <- deltamm( look, N = 701, verbose = TRUE );
R> look2 <- MergeForce( look2 );
R> plot(look2);
R> summary( look2 );

The above code results in one unmatched forecast feature and all of the observed features
are matched (none are merged in this case). The next step is to make comparisons using the
matched features. A host of plots will be produced with the plot command below, so it is
recommended to send them to a file instead of the interactive device (e.g., using the pdf and
dev.off functions, as commented out in the example below).

R> res <- FeatureMatchAnalyzer( look2 );
R> summary( res );
R> # pdf( "<path>/<filename>.pdf" );
R> plot( res );
R> # dev.off();

Partial Hausdorff Distance:
[1] 358.3644 265.0113 115.4278 145.6779 117.6488

Pratt's Figure of Merit:
[1] 9.234583e-05 1.261031e-04 3.399951e-05 1.543438e-04 1.613622e-03

Minimum Separation Distance:
[1] 301.12463 237.30742 49.15403 125.98264 16.93164

Centroid Distance:
[1] 4.081250 4.312849 1.312498 7.261459 4.212587

Angle Difference:
[1] 18.25718 2.83257 96.32814 99.95482 122.92182

Area Ratio:
[1] 0.110518293 0.783132530 0.008752735 0.265217391 0.100977199

Intersection Area:
[1] 0 0 0 0 0

Bearing:
[1] -60.54385 -81.95897 -119.10315 -92.21930 -114.33202

Baddeley's Delta Metric:
[1] 218.00033 179.49531 57.84966 89.90572 69.94918

Hausdorff Distance:
[1] 358.9509 265.5978 116.0143 146.0927 118.4784
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Hausdorff distance, partial Hausdorff distance, Baddeley’s ∆, and Pratt’s Figure of Merit
(FoM) are discussed in Section 5. Minimum separation distance is the shortest distance
between the two features. What is worth noting now is that the centroid distance between
the first pair of matched features is only about four grid points, but the minimum separation
distance and Baddeley’s ∆ metric are both very large and are also in units of grid points.
Next, perform the contingency-table approach suggested in Davis et al. (2009).

R> tres <- FeatureTable( look2 );
R> summary( tres );

Feature-based Contingency Table
hits misses fales alarms correct negatives

5 0 1 89
[1] "ICP real case valid 1 June 2005 0 UTC"
[2] "Stage II analysis"
[3] "Model 1"

[1] "Normal Approximation"

95% lower CI Estimate 95% upper CI
GSS 0.76388367 0.82407407 0.88426448
POD 0.99996080 1.00000000 1.00003920
false alarm rate -0.01054494 0.01111111 0.03276717
FAR 0.16665333 0.16666667 0.16668000
HSS 0.86737299 0.90355330 0.93973361

As can be seen, the heavy lifting is in identifying, and even moreso, in merging/matching
features. Subsequent analyses are fairly simple to obtain from the objects output from
FeatureFinder and the merge/match functions. The original MODE fuzzy-logic interest
value analysis can be duplicated using the interester function. Similar to deltamm, it re-
quires making comparisons across all of the combinations of features in order to identify the
highest interest combinations. Traditionally, the entire output is given, so that is also done
by the code below but is not reproduced here.
The interest values are caclualted through a weighted combination of interest functions. The
interest function, f(x), for all of the property comparisons, except for area ratio, intersection
area and FoM is given by the piece-wise linear function

f(x) =


1 if x ≤ b1
a0 + a1 · x if b1 < x ≤ b2
0 if x > b2,

where a1 = −1/(b2 −b1), a0 = 1−a1 ·b1, and the user can select b1 and b2 through the b1 and
b2 arguments. These arguments, as well as weights, are length-eleven numeric vectors that
line up with the properties argument. A particular property may be excluded by setting
the weights argument to zero for that property. For example, if centroid distance is not to
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be included in the interest value, then set the first component of weights to zero. For area
ratio and intersection area, the interest function is given by

f(x) =


0 if x < b1
a0 + a1 · x if b1 ≤ x < b2
1 if x ≥ b2,

where a1 = 1/(b2 − b1) and a0 = 1 − a1 · b2. Finally, FoM’s interest function is given by
b1 exp{−((x− 1)/b2)4/2}.

R> ires <- interester( look2, verbose = TRUE );
R> summary( ires );

To remove the smallest sized features, the following modification to the call to FeatureFinder
may be made. The following code results in only one observed feature and two forecast
features.

look <- FeatureFinder( hold, smoothpar = 10.5, thresh = 5, min.size = 700 );

A function that is used by some of the functions already demonstrated is FeatureAxis. It can
be a useful function by itself, however. In the following code, only the output for summary(
ang1 ) is shown for brevity.

R> ang1 <- FeatureAxis( look$X.feats[[ 1 ]] );
R> ang2 <- FeatureAxis( look$Y.feats[[ 1 ]] );
R> summary( ang1 );
R> summary( ang2 );

Mid-point of Axis is at:
[1] "(125.454675192381, 205.600603829035)"

Major Axis length = 55.54851

Major Axis Angle = 63.6426 degrees

Minor Axis length = 41.07206

Minor Axis Angle = 153.6426 degrees

Aspect ratio = 0.7393909

sma fit summary (see help file for function sma from package smatr)

Call: sma(formula = y ~ x, data = data.frame(x = pts[, 1], y = pts[,
2]))
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Fit using Standardized Major Axis

------------------------------------------------------------
Coefficients:
Coefficients:

elevation slope
estimate -47.59876 2.018254
lower limit -163.16280 1.302429
upper limit 67.96527 3.127501

H0 : variables uncorrelated
R-squared : 0.007336402
P-value : 0.69758

NULL

R> plot( ang1 );
R> plot( ang2 );
R> plot( ang1, zoom = TRUE );
R> plot( ang2, zoom = TRUE );

The last plot commands show the two features with their estimated (using smatr package)
major and minor axes in their respective spatial locations within D (displayed in Figure 9
top row). The commands with zoom=TRUE show them blown up within a bounding box so
that they can be more easily seen (Figure 9 bottom row). Notice the look$X.feats[[ 1 ]]
and look$Y.feats[[ 1 ]] calls in the above code. These list components are not intended
for the user to access, but they can nevertheless be obtained as they may be of interest for
more advanced users. Here, the X.feats and Y.feats are the features for the observed and
forecast fields, respectively, in list argument form where each feature is alone on the domain’s
grid as a binary matrix. It is a way to easily acces individual features but it is considered an
advanced operation.

4.2. Structure Amplitude Location (SAL)

The Structure, Amplitude and Location (SAL) method acts on objects of class "features"
as returned by FeatureFinder. The method provides distributional summaries of forecast
performance that consider displacement errors, intensity errors and a spatial texture summary.
Note that this approach is best applied on relatively small domains, much smaller than that
of the example provided here.
The structure component is given by

S = 2 · V (X̂) − V (X)
V (X̂) + V (X)

,

where
V (X) =

∑k
i=1 Zi · V (Zi)∑k

i=1 Zi

,
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Figure 9: A pair of matched features shown in their respective locations in space along with
their major and minor axes and convex hull (top row). Each is also shown within their own
bounding box (bottom row) in order to better see their shapes and orientations.

with Zi, i = 1, . . . , k denoting the set of grid points for individual features within the field
and

V (Zi) = 1
maxs∈Zi{X(s)}

∑
s∈Zi

X(s) = ni

maxs∈Zi{X(s)}X̄Zi ,

where X is replaced with X̂ when applied to the forecast field and ni is the number of grid
points in feature i. Note that the features within each field are neither merged within a
field nor matched between fields. The larger the value of S, the worse the forecast predicts.
Negative values for S are indicative of forecast features that are too small or incorrectly
shaped.
The amplitude component is a simple comparison of the domain-averaged values given by

A = 2 ·
1
N

∑
s∈D X(s) − 1

N

∑
s∈D X̂(s)

1
N

∑
s∈D X(s) + 1

N

∑
s∈D X̂(s)

= 2 · X̄ − ˆ̄X
X̄ + ˆ̄X

.

This component has a range in [−2, 2] with zero indicating a perfect forecast. A = 1 means
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that the forecast is biased by a factor of three compared to the domain averaged observed
values, and A = −1 indicates a low bias by a factor of three.
The location component is the sum of two types of location components, L = L1+L2 where L1
is the centroid distance between X(s) and X̂(s) taken over the entire domain, D, normalized
by the largest distance between two boundary points of D, denote this distance by D. The
second component involves the centers of mass of the individual features within each field and
is given by

L2 = 2 · |µ(X̂) − µ(X)|
D

,

using X and X̂ for brevity with

µ(X) =
∑k

i=1 νi · X̄Zi∑k
i=1 X̄Zi

,

where νi is the centroid distance of the entire field and the individual feature i. The range of
values that L can realize are in [0, 2] with zero a perfect score.
See Wernli et al. (2008, 2009) for details about this approach. The following code will perform
the SAL method.

R> look <- FeatureFinder( hold, smoothpar = 10.5, thresh = 5 );
R> saller( look );

ICP real case valid 1 June 2005 0 UTC
Precipitation (mm/h)
[1] "ICP real case valid 1 June 2005 0 UTC"
[2] "Stage II analysis"
[3] "Model 1"

S A L
0.68897269 0.09949281 0.22615191

The value returned by saller is an object of class "saller" and the L1 and L2 components
can be accessed, if assigned to an object. For example, if the last line above is replaced by
tmp <- saller( look ), then L1 can be obtained using tmp$L1.

4.3. Feature composites

Another distributional approach available in SpatialVx is similar in spirit to the composite
method proposed by Nachamkin (2004, 2009); Nachamkin, Chen, and Schmidt (2005). The
idea is to center all of the features on top of each other (for each field individually) to form
a composite that can be graphed to compare the distribution of features. Using the look
object from the previous example in Section 4.2:

R> look3 <- compositer( look );
R> plot( look3, col = cl );
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Figure 10: Composite features for the 1 June 2005 case using a threshold of 5 mmh−1. Model
1 is wrf4ncar. The bottom panels show the conditional composites, which restrict summing
of feature existence to features that overlap with features from the other field.

The resulting graphic from the plot command above is shown in Figure 10. All of the features
from the analysis (top left) and model (top right) fields are centered on top of each other and
the sum is taken resulting in the “density" plots shown. The bottom row is similar except
that the densities are conditioned on the presence of the features from the other field.
From this graphic, it is easy to see that the features from the forecast field tend to be too too
small. The model also has more low-intensity “scatter" that is oriented incorrectly from the
overall orientation tendencey of the observation for this time point.
Features can be combined across "features" (or "matched") objects in order to obtain a
distributional picture of features over, e.g. many snapshots in time, by using the combiner
function.

4.4. Shape analysis

Shape analysis (Dryden and Mardia 1998) is a closely related topic to image warping. Micheas,
Fox, Lack, and Wikle (2007) proposed using shape analysis within a feature-based approach
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to verify quantitative precipitation field ensembles, and Lack et al. (2010) studied the idea
further. The idea is to identify landmark points (analogous to control points in image warping)
and subsequently distill the information from the features down to comparisons based on
the positioning of these points. Micheas et al. (2007) and Lack et al. (2010) additionally
summarize the comparison using intensity information.

R> holdg0 <- make.SpatialVx( geom000, geom004, thresholds = c(0.01, 50.01),
+ projection = TRUE, map = TRUE, loc = ICPg240Locs,
+ loc.byrow = TRUE,
+ field.type = "Geometric Objects Pretending to be Precipitation",
+ units = "mm/h", data.name = "ICP Geometric Cases",
+ obs.name = "geom000", model.name = "geom004" );

R> lookg0 <- FeatureFinder(hold, do.smooth = FALSE, thresh = 2, min.size = 200);
R> lookg0 <- hiw( lookg0 );
R> summary( lookg0 );

[,1]
SSloc 15625
SSavg 0
SSmin 0
SSmax 0

R> par(mfrow=c(1,2));
R> plot(lookg0);
R> plot(lookg0, which = "Xhat");

Following shape analysis for images, the features are first rotated to have the same orientation
and then landmarks are paired according to the respective angles from this re-orientation.
The summary output gives information about the sum of squares translation errors (taken
over each pair of landmark points), as well as the average, minimum and maximum for each
pair of features. Because the only difference between the re-oriented shapes is a translation
error, only SSloc is positive and the rest are zero.
Figure 11 shows the result of the above plot command. Because the shapes are perfectly con-
cave, the landmarks are easily found. Unfortunately, in real meteorological fields, individual
features are rarely perfectly concave (cf. Figure 12) making it difficult to identify landmark
points in a meaningful way. One solution is to heavily smooth the features prior to identifying
them but it will still not guarantee that the shapes are concave. The main function, hiw, for
identifying landmarks makes a reasonable attempt to account for holes within the features as
well as other situations where the features diverge from concavity. Nevertheless, even if the
landmarks can reasonably be attained, it is subsequently difficult to make valid comparisons
between such landmark points. Therefore, it is best to perform shape analysis on fields that
naturally render concave features.
Figure 13 depicts one alternative way that boundary points might be selected for convex
shapes. The idea is to first deform the shape into a perfect circle with the same centroid and
area as the original shape. The circle, of course is a simple concave shape whose boundary
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X (feature 1) Xhat (feature 1)

Figure 11: Example of how landmark points are determined for a concave shape. The two
ovals from geom000 and geom004 are identical apart from a re-scaling and translation. Rays
from the centroid of each oval are extended to the boundary at pre-determined angles. Where
the rays intersect with the boundary determines the landmarks.

points are easily identified. Using these boundary points, perform the inverse warp transform
to determine their positions on the original image. Although this method generally produces
shape points that better depict the convex shape, analyzing the result remains a challenge
and the idea is not carried out any further here.

5. Spatial alignment summary measures
All of the methods for making non-distributional comparisons between two fields that have
been discussed so far, image warping and MODE, are relatively complicated methods. They
provide useful diagnostic information but also require expertise to be able to analyze the
results effectively. This section deals with very simple summaries of spatial alignment errors
for the entire domain. Of course, all of the summaries discussed in this section can be applied
to individual features, as is carried out in the MODE examples of Section 4.1. In fact, some
of them are much better suited to the task than the commonly used centroid distance. The
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Figure 12: Similar to Figure 11 but for features within a (heavily smoothed) real precipitation
field. Note the holes and lack of concavity, which make determining the landmarks difficult.

Figure 13: Illustration (not to scale) of a possible method to identify boundary points on a
convex shape. The shape is first image warped to a circle (with the same centroid and area).
Rays are extended from the circle’s center to its boundary to find boundary points for the
circle. These points can then be deformed back to the original shape.

newest summaries available with SpatialVx are those introduced by Gilleland (2021) so are
not included in the feature-based functions.
The formulas and background on the measures employed in this section can be found in
Baddeley (1992a,b); Gilleland et al. (2008); Gilleland (2011, 2017); Gilleland et al. (2020)
and Gilleland (2021). Gilleland et al. (2020) provided a rigorous evaluation of several of these
measures using challenging test cases developed therein and the main results are summarized
in Gilleland (2021) along with additional evaluation for FoM and the new measures, G, Gβ,
etc., proposed therein. As all of these measures can be computed efficiently using distance
maps, it is useful to give some background on them first.
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Figure 14: Top shows image plots for the convolution-radius filtered fields (using a radius of
ten grid points) from the top row of Figure 3. Bottom row is the binary field created from
the images in the top row using a threshold of 2.1 mmh−1.

5.1. The distance map and its role in calculating the measures

Recall that d(s, A) represents the shortest distance from grid point s to the nearest grid point
in the set A and let IX and IX̂ be the set of one-valued grid points in the binary “observed"
and forecast fields, respectively. All of the summary measures described in this section can
be calculated efficiently using distance maps applied to the binary fields. As an example,
Figure 14 shows the binary field obtained from applying the convolution-radius filter (with a
radius of ten grid points) used by MODE.13

The following code will reproduce Figures 14 and 15. kernel2dsmooth from smoothie per-
forms the convolution-radius filtering while binarizer from SpatialVx employs functions from
spatstat to create the binary fields as class "owin" objects that can be used with distmap
from spatstat. Note that binarizer can also return regular matrices but in the code below,

13The smoothed fields are used for this example in order to make crisper-looking distance maps for illustrative
purposes. The measures presented in this section do not apply any smoothing, although applying the summaries
to fields that have been smoothed over different sized “neighborhoods" could be useful.
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Figure 15: Top row shows the distance maps for the binary fields in the bottom row of
Figure 14. Bottom left shows the magnitude difference between the two fields in the top row.
Bottom right first applies the cut-off function ω(x) = max{x, 150} to each field in the top
row before taking the magnitude difference between them.

the regular matrices are converted from the "owin" objects.

R> Xsm <- kernel2dsmooth( x = obs0601, kernel.type = "disk", r = 10 );
R> Xhatsm <- kernel2dsmooth( x = wrf4ncar0531, kernel.type = "disk", r = 10 );
R> zlsm <- range( c( c( Xsm ), c( Xhatsm ) ), finite = TRUE );

R> par( mfrow = c( 2, 2 ) );
R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, Xsm, col = cl, zlim = zlsm, add = TRUE,
+ xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();

R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
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R> poly.image( l$lon, l$lat, Xhatsm, col = cl, zlim = zlsm, add = TRUE,
+ xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();
R> image.plot( Xsm, zlim = zlsm, col = cl, legend.only = TRUE );

R> # Create binary fields using a threshold of 0.1 mm/h.
R> Z <- binarizer( X = Xsm, Xhat = Xhatsm, threshold = 2.1, value = "owin" );
R> XsmBin <- as.matrix( Z[[ 1 ]] ) * 1; XhatsmBin <- as.matrix( Z[[ 2 ]] ) * 1;
R> XsmDM <- distmap( Z[[ 1 ]] ); XhatsmDM <- distmap( Z[[ 2 ]] );
R> XsmDM <- as.matrix( XsmDM ); XhatsmDM <- as.matrix( XhatsmDM );

R> # Magnitude difference in distance maps.
R> dDM <- abs( XhatsmDM - XsmDM );
R> tmp1 <- XhatsmDM; tmp2 <- XsmDM;
R> tmp1[ tmp1 > 150 ] <- 0; tmp2[ tmp2 > 150 ] <- 0;
R> dDM2 <- tmp1 - tmp2;

R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, XsmBin, col = c( "white", "darkblue" ),
+ add = TRUE, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();

R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, XhatsmBin, col = c( "white", "darkblue" ),
+ add = TRUE, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();

R> # Distance map figure.
R> zldm <- range( c( c( XsmDM ), c( XhatsmDM ) ), finite = TRUE );
R> zldDM <- range( c( dDM ), finite = TRUE );

R> par( mfrow = c( 2, 2 ) );
R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, XsmDM, col = cl, add = TRUE,
+ zlim = zldm, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();

R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, XhatsmDM, col = cl, add = TRUE,
+ zlim = zldm, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();
R> image.plot( XsmDM, zlim = zldm, col = cl, legend.only = TRUE,
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+ horizontal = TRUE, legend.mar = 0.01 );

R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, dDM, col = cl, add = TRUE,
+ zlim = zldDM, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();

R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, dDM2, col = cl, add = TRUE,
+ zlim = zldDM, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();

R> image.plot( dDM, zlim = zldDM, col = cl, legend.only = TRUE,
+ horizontal = TRUE, legend.mar = 0.01 );

Baddeley’s ∆ (Baddeley 1992a,b) is given by the Lp norm of τ = |ω(d(s, IX̂) − ω(d(s, IX))|
taken over all s ∈ D, where ω is any concave function so that ω(x + y) ≤ ω(x) + ω(y). The
function deltametric from spatstat is used to compute ∆ where ω(x) = max{x, c} for c a
user-chosen constant. The role of ω is to ensure that the alteration of a fixed number of grid
points in the set has a bounded effect on the measure. It helps to mitigate edge effects that
result from the fact that its calculation is over the entire domain (see, e.g., Schwedler and
Baldwin 2011, who demonstrate this issue in the spatial verification context). Note that τ
is just the magnitude difference between the distance maps defined by d(s, IX̂) and d(s, IX),
meaning that ∆ can be computed efficiently.14 In particular, Baddeley’s ∆ with c = ∞ is the
Lp norm of the field in the bottom left panel of Figure 15 and for c = 150, it is the Lp norm
of the field in the bottom right panel of the figure.
The Hausdorff distance, for the finite domains of the verification application is the maximum
of d(s, IX̂) over all s ∈ IX and d(s, IX) over all s ∈ IX̂ , and can be obtained as the limit
when p goes to infinity in the Lp norm of τ so that it is a special case of Baddeley’s ∆.15

That is, the Hausdorff distance is the maximum value of the field in the bottom left panel of
Figure 15.
It can be useful to restrict attention to the sets of grid points with value one in the binary
fields. Figure 16 shows the same distance maps from Figure 15 masked out using the binary
fields from Figure 14. The left panel is the distance map from the top right of Figure 15
masked out using the binary field from the bottom left of Figure 14, and analogously for the
right panel. The following code will reproduce Figure 16.

R> Z1 <- XhatsmDM; Z1[ XsmBin == 0 ] <- NA;
R> Z2 <- XsmDM; Z2[ XhatsmBin == 0 ] <- NA;

14deltamm does not use deltametric when computing ∆ in order to minimize having to re-compute the
distance maps multiple times.

15The partial Hausdorff measure takes the maximum of the k-th largest order statistic, instead of the
maximum, of each of these quantities.
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Figure 16: The distance maps from the top row of Figure 15 conditioned on the other field.
Left is the wrf4ncar0531 distance map only displayed where there exists an “observed" feature
(i.e., all points outside the one-valued set of grid points in Figure 14 bottom left are masked
out). Right is the distance map for the “observed" field masked using the bottom right binary
field of Figure 14.

R> par( mfrow = c( 1, 2 ) );
R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, Z1, col = cl, add = TRUE,
+ zlim = zldm, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();

R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, Z2, col = cl, add = TRUE,
+ zlim = zldm, xlab = "", ylab = "", axes = FALSE );
R> map( database = "state", add = TRUE );
R> map.axes();
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The mean-error distance between IX̂(s) and IX(s), denoted by MED(IX̂(s), IX(s)), is the
average value of d(s, IX̂) over all s ∈ IX . Note that MED is not symmetric because gen-
erally MED(IX̂(s), IX(s)) ̸= MED(IX(s), IX̂(s)). Gilleland (2017) argued that the lack of
symmetry can be exploited in the forecast verification domain because MED(IX̂(s), IX(s))
informs about misses and MED(IX(s), IX̂(s)) informs about false alarms in a spatial distance
manner. MED(IX̂(s), IX(s)) is the average of d(s, IX̂(s)) over the set IX ⊂ D of the left panel
in Figure 16, while MED(IX(s), IX̂(s)) is the average of d(s, IX(s)) over those grid points in
IX̂ ⊂ D of the right panel of the figure.
Although included in this software, FoM suffers from many drawbacks and is not discussed
further here. The new measures involve the product of two terms: the area of symmetric dif-
ference between IX̂ and IX , denoted by y1, and a weighted sum of the MED taken in both di-
rections, denoted by y2. Specifically, y2 = nIX

·MED(IX̂(s), IX(s))+nIX̂
·MED(IX(s), IX̂(s)),

where nIX
and nIX̂

are the number of grid points in the sets IX and IX̂ , respectively. The
first measure is G(IX̂(s), IX(s)) = (y1y2)1/3 and the second is Gβ(IX̂(s), IX(s)) = max{1 −
y1y2/β, 0}; both are symmetric. Gilleland (2021) suggested, but did not analyze, an asymmet-
ric version of these measues by defining y1(A,B) = nB −nAB and y2(A,B) = MED(A,B) ·nB

which show up in the printout. The rationale given in Gilleland (2021) for the cubed root in
the definition of G was that an area (units of grid points squared) is multiplied by a distance
(units of grid points) so that the cubed root would give units of grid points, akin to the other
measures. However, in fact, the y2 term involves the sum of distances over an area so that
the units for y2 are actually grid points to the fourth power, and thus the product term y is
in units of grid points to the sixth power. Therefore, it is

√
G that is in units of grid points.

All of the measures, except FoM and Gβ, are zero when the two fields match perfectly and in-
creasing values imply decreasing forecast performance. FoM and Gβ are scaled to fall between
zero and one with one representing a perfect match and zero a poor match. See Gilleland
(2021) to learn how to choose β.
The manner by which SpatialVx carelessly assumes a regular grid of points for geo-referenced
data introduces an inaccuracy that cannot be avoided in calculating the distance maps; par-
ticularly for locations near the poles. Nevertheless, the measures have been shown to be useful
despite this sacrifice for computational efficiency as has been demonstrated by, e.g., Gilleland
(2011, 2017, 2021), Brunet and Sills (2016), Schwedler and Baldwin (2011) and Gilleland et al.
(2020).

5.2. Calculating the measures with SpatialVx

The following code will calculate all of the various measures described above except the new
ones.

R> locmeasures2d( hold, k = 4 );

[1] "ICP real case valid 1 June 2005 0 UTC\nPrecipitation (mm/h)"
Comparison for:
[1] "ICP real case valid 1 June 2005 0 UTC"
[2] "Stage II analysis"
[3] "Model 1"
[1] "ICP real case valid 1 June 2005 0 UTC\nPrecipitation (mm/h)"
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Comparison for:
[1] "ICP real case valid 1 June 2005 0 UTC"
[2] "Stage II analysis"
[3] "Model 1"
Threshold(s) is (are):
[1] "0.1" "2.1" "5.1" "20.1"
Baddeley Delta Metric with c = Inf

0.1 2.1 5.1 20.1
p = 2; 26.58215 31.76413 51.00272 81.36362

Hausdorff distance
0.1 2.1 5.1 20.1

[1,] 89.73287 121.5368 344.4186 311.4498

Quantile (if k in (0,1) or k-th highest (if k = 1, 2, ...) difference in distance maps.
0.1 2.1 5.1 20.1

k = 4; 89.73287 121.5368 342.5874 310.6195

Mean error distance (Miss)
0.1 2.1 5.1 20.1

[1,] 5.241503 11.54831 14.58828 26.51177

Mean error distance (FalseAlarm)
0.1 2.1 5.1 20.1

[1,] 5.026305 15.99586 21.85267 102.7902

Mean square error distance (Miss)
0.1 2.1 5.1 20.1

[1,] 120.9354 287.6795 341.6212 784.217

Mean square error distance (FalseAlarm)
0.1 2.1 5.1 20.1

[1,] 84.88085 490.693 1362.729 20954.02

Partial Hausdorff distance
0.1 2.1 5.1 20.1

k = 4; NA NA NA NA

Pratt's figure of merit (FOM)
0.1 2.1 5.1 20.1

alpha = 0.1; 0.6377748 0.3089145 0.1135902 0.01969333
NULL

The results above are applied to wrf4ncar (Model 1). To apply them to Model 2 (wrf4ncep),
use the model argument: locmeasures2d( hold, k = 4, model = 2 );.
Because of their recent development, G and Gβ are not included with locmeasures2d nor
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do they have a method function for "SpatialVx" objects. Instead, they must be called
individually and work directly on the matrices of interest.

R> Gbeta( X = obs0601, Xhat = wrf4ncar0531, threshold = 2.1, beta = 601 * 501 / 2 );

Observation (A) = obs0601
Model (B) = wrf4ncar0531
Threshold and rule: 2.1 ( > )
beta = 150550.5
Gbeta(A,B) = 0.8584995

Component parts and asymmetric Gbeta:

nA nB nAB nA + nB - 2nAB medAB
7.717000e+03 8.488000e+03 9.720000e+02 1.426100e+04 1.599586e+01

medBA medAB * nB medBA * nA asymGbetaAB asymGbetaBA
1.154831e+01 1.357729e+05 8.911833e+04 9.549769e-01 9.734793e-01

The print method for the returned "Gbeta" class object shows the original call to the function
and shows that the binary field created from X and Xhat was made by assigning one to values
greater than (the rule=">" argument) 2.1, along with the value of β chosen. The value of
the measure is about 0.86, meaning that for this choice of β the forecast predicted values
above 2.1 mmh−1 reasonably well, although there may still be room for improvement.16 The
printout also provides information about the components that make up Gβ, as well as the
asymmetric versions.
Measures like Gβ are particularly well suited for ranking different models against the same
observation.

R> c( Gbeta( X = obs0601, Xhat = wrf4ncar0531, threshold = 2.1,
+ beta = 601 * 501 / 2 ) );
R> c( Gbeta( X = obs0601, Xhat = wrf4ncep0531, threshold = 2.1,
+ beta = 601 * 501 / 2 ) );
R> c( Gbeta( X = obs0601, Xhat = wrf2caps0531, threshold = 2.1,
+ beta = 601 * 501 / 2 ) );

[1] 0.8584995
[1] 0.7322819
[1] 0.8592137

According to Gβ, wrf2caps is the best model for this case with wrf4ncar a close second and
wrf4ncep a distant third. Note that use of c() strips the attributes of the "Gbeta" object so
that only the value of Gβ is displayed.
To calculate G, the relevant function is called TheBigG and otherwise works analogously as
Gbeta.

16Values closer to one are better and those closer to zero are worse, but the precise meaning depends on the
scale of features in the field relative to the domain size and the choice of β. Therefore, this measure is perhaps
best suited to making comparisons against competing models or over different forecast cycles, lead times, etc.
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R> TheBigG( X = obs0601, Xhat = wrf4ncar0531, threshold = 2.1 );

Observation (A) = obs0601
Model (B) = wrf4ncar0531
Threshold and rule: 2.1 ( > )
G(A,B) = 1474.713

Component parts and asymmetric G:

nA nB nAB nA + nB - 2nAB medAB
7.717000e+03 8.488000e+03 9.720000e+02 1.426100e+04 1.599586e+01

medBA medAB * nB medBA * nA asymG.AB asymG.BA
1.154831e+01 1.357729e+05 8.911833e+04 1.020469e+09 6.011031e+08

6. Field qualities
Besides the more direct comparison of spatial alignments and/or intensity errors, it can be
useful to analyze distributional aspects of individual fields, possibly also comparing these
qualities.

6.1. Structure function
Harris, Foufoula-Georgiou, Droegemeier, and Levit (2001) proposed use of the structure func-
tion in order to evaluate the model’s ability to reproduce the variability observed, in their
case, of precipitation. The structure function is given by

Sq(h) = 1
nh

∑
s∈Nh

|X(s + h) −X(s)|q , (2)

where h = (hx, hy) is a spatial lag in each coordinate, Nh is the set of pairs of grid points
separated by h, nh is the number of points in Nh, and q is a user-chosen parameter.17 When
q = 2, Eq (2) is equivalent to the better-known semi-variogram. Use of the variogram for
evaluating high-resolution forecast models was proposed by Marzban and Sandgathe (2009).
Unlike most of the functions in SpatialVx, Sq(h) can be easily applied to spatial data that
are not on a regular grid of points. There are two functions for computing the structure
function depending on the type of data (regular grid or irregular set of points). The function
structurogram works on irregular data sets and shoud only be used for smaller data sets.
The functions structurogram.matrix and variogram.matrix are relatively minor modifi-
cations18 of the fields function vgram.matrix and can be used on the larger spatial fields;
provided they are on a regular grid.

R> Slook <- structurogram.matrix( obs0601, R = 20, zero.out = TRUE );
R> plot( Slook, col = cl );

17Harris et al. (2001) compute the average only over the nonzero grid points in Nh.
18structurogram.matrix and variogram.matrix differ from vgram.matrix in that they allow missing values,

can be applied only to the nonzero grid pionts, and do not include the robust version of the variogram.
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R> Slook2 <- structurogram.matrix( obs0601, R = 20 );
R> plot( Slook2, col = cl );

Figures 17 and 18 show the plots resulting from the above code. The value R=20 limits the
extent of lags h and the higher this number, the less computationally efficient the process.
The graph in the first figure is calculated only over the nonzero grid points and the second
over all of them. In the first example, the plot on the right of the figure suggests that there
may be some anisotropy when caclulating over only the nonzero grid points because of the
break from perfect semi-circles about the origin. This anisotropy does not show up in the
latter figure. In either case, the plot on the left suggests that the spatial range of dependence
seems to be somewhere around the 20 grid points. The larger variability in the left panel
of Figure 17 when compared against that of Figure 18 suggests that there is a relatively
rough texture when only considering the nonzero grid points but that the texture is relatively
fine when considering all grid points. Because most grid points are zero, this result makes
sense because where there is precipitation, the amounts of precipitation are highly variable,
but there is no variability where there is no precipitation. Inclusion of the zero values also
considerably decreases the value of Sq(h) over all lags h as evidenced by the range of values
on the ordinate axis of the left panels of these figures, as well as the color legend on the right
panels. Again, this result makes sense because of the large number of zeros in the latter case
that lower the average difference in lagged quantities.
Next, it is of interest to also check the structure function for the forecast, in this case
wrf4ncar0531.

R> Slook <- structurogram.matrix( wrf4ncar0531, R = 20, zero.out = TRUE );
R> plot( Slook, col = cl );

Figure 19 shows the results from the above code. This structure function is taken over only
the nonzero grid points. Compared aginst Figure 17, it is clear that the model does not
capture the variability (or texture) of the precipitation areas that are observed in the Stage
II analysis field for this valid time. Also, the spatial range of dependence appears to be much
shorter and the isotropy assumption appears to be more valid.

6.2. Geometric indices

The amount of dispersion in a spatial field is quantified by the variogram and/or structure
function. Perhaps more simply, an overall summary of a field’s dispersion can be obtained
through a couple of geometric indices; although they do not inform about different scales
the way a variogram does. AghaKouchak et al. (2011) suggested three geometric indices,
connectivity (Cindex), complexity (or area, Aindex) and shape (Sindex). The latter two
are very similar to one another. Applied to binary fields, Aindex is the area of the set of
nonzero grid points, call this set Z and let nZ denote the size of Z, divided by the convex hull
surrounding Z. The area index was also used within the MODE framework (cf. Davis et al.
2009). The shape index is the shortest possible perimeter with nZ grid points in Z divided
by an estimate of the actual perimeter around Z. The connectivity index is defined by

Cindex = 1 − nc − 1
√
nZ + nc

,
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Figure 17: Structure function with p = 2 (semi-variogram), calculated only on the nonzero
grid points, on the left and the same by angle on the right. Circles in the right panel indicate
the isotropic structure function (ignoring direction) while the dots are further distinguished
by different directions. The directional components are better visualized in the right panel.

where nc is the number of isolated clusters (i.e., connected components).
The geometric indices range between zero and one. Figure 20 illustrates how the gemoetric
indices vary depending on the field properties. The shape index measures how circular the
set Z is in shape so that values near one are more circular and values near zero are not at
all circular in shape. The connectivity index will always be one if there is only one isolated
cluster; the area index will always be one if the only isolated cluster is concave in shape.
Because these indices operate on binary fields, the binary fields XsmBin and XhatsmBin as-
signed in the code in Section 4.3 will be used to demonstrate the relevant functions in Spa-
tialVx for computing these indices.

R> round( c( Cindex( XsmBin ), Aindex( XsmBin ), Sindex( XsmBin ) ), digits = 2 );
R> round( c( Cindex( XhatsmBin ), Aindex( XhatsmBin ), Sindex( XhatsmBin ) ),
+ digits = 2 );



Eric Gilleland 41

5 10 15 20

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

separation distance

st
ru

ct
ur

e 
(q

=
2)

−10 0 10 20

0
5

10
15

20

Structure by direction

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 18: Structure function with p = 2 (semi-variogram), calculated on all of the grid
points, on the left and the same by angle on the right.

Aindex A Aconvex dx dy Sindex Pmin
0.92 0.11 8240.00 75094.50 1.00 1.00 0.25 364.00

P
1430.00

Aindex A Aconvex dx dy Sindex Pmin
0.95 0.13 10275.00 80576.00 1.00 1.00 0.27 406.00

P
1518.00

The dx and dy arguments of the Aindex function are used if the grid points should have
different lengths depending on the x- or y- directions, but this correction is only important
for the individual numerator and denominator components that go into the area index, which
are also reported in the output. In each case, the connectivity index is less than one, though
near one, indicating that there is more than one connected component in the field but that
there are relatively few such isolated clusters. Both the area and shape indices are closer to
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Figure 19: Same as Figure 17 except for wrf4ncar0531.

zero than one indicating that the clusters are relatively disperse.

7. Competing forecast verification

A gaping hole that has been in the spatial verification literature and methodologies is a lack
of uncertainty information. The image warping procedure from Section 3 is an exception in
that the modeling framework lends itself naturally to statistical inference. The challenge,
however, is the sheer number of parameters (the control points) needed for most reasonable
warps. Moreover, the CI’s for this approach tend to be too narrow.
One method introduced by Hering and Genton (2011), the spatial prediction comparison test
(SPCT), does provide a statistical inference framework in the realm of competing forecast
verification. The procedure begins by estimating the loss function for each of the two forecasts
that are to be compared. Any loss function may be applied but Gilleland (2013a) found that
the absolute-error loss seemed to work best with the ICP precipitation fields. Let X̂1(s) denote
the first forecast and X̂2(s) denote the competing second forecast, then let g1(X(s), X̂1(s)) =
g1(s) = |X̂1(s) − X(s)| and, similarly, g2(s) = |X̂2(s) − X(s)|. g1(s) and g2(s) are the loss
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Figure 20: Illustration of how the geometric indices vary according to field properties.

functions, here absolute-error loss, for each forecast against the observed series. Interest is
then in the loss differential field given by ψ(s) = g1(s) − g2(s). Note that ψ(s) is itself a
spatial field.
The null hypothesis for the SPCT is H0 : E[ψ(s)] = 0. The trick is to estimate a variance
for ψ(s) that accounts not only for the spatial dependence in the loss differential field but
also is robust against the contemporaneous correlation between g1(s) and g2(s).19 Hering
and Genton (2011) proposed estimating the variance using the spectral density similarly
as proposed for statistical time series forecasts by Diebold and Mariano (1995). First, a
parametric varigoram model is fit to the empirical variogram typically using all lags up to half
the maximum possible lag. The variance is then estimated through a weighted average over
all spatial lags of the fitted parametric variogram model. Hering and Genton (2011) showed
that the SPCT is both accurate and powerful, and robust to contemporaneous correlation
using empirical tests for size and power.
The SPCT can be applied to either irregularly spaced grids or to regular grids. The function
spct can be used for irregularly spaced data and smaller regular grids. For the large-sized
grids such as the ICP test cases employed here, the following code will perform the test.

19It is likely that the contemporaneous correlation is strong because both X̂1(s) and X̂2(s) are attempting
to predict the same observation. However, even if these two forecasts were independent of each other, both
loss functions involve the same X(s), so contemporaneous correlation must be considered here.
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R> hgres <- lossdiff( x = obs0601, xhat1 = wrf4ncar0531, xhat2 = wrf4ncep0531,
+ lossfun = "abserrloss" );
R> hgres <- empiricalVG.lossdiff( hgres, maxrad = 8 );
R> hgres <- flossdiff( hgres );
R> hgres <- summary( hgres );
R> plot( hgres, icol = cl );

[1] "abserrloss: wrf4ncar0531 vs wrf4ncep0531 (against verification: obs0601)"
Fitted trend information (note: not used by subsequent functions, information only):

Call:
lm(formula = y ~ x1 + x2, data = dat)

Residuals:
Min 1Q Median 3Q Max

-68.813 0.048 0.091 0.147 72.174

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.760e-01 1.031e-02 -17.068 <2e-16 ***
x1 2.670e-04 2.243e-05 11.903 <2e-16 ***
x2 -1.597e-05 2.690e-05 -0.594 0.553
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.135 on 301098 degrees of freedom
Multiple R-squared: 0.0004715, Adjusted R-squared: 0.0004649
F-statistic: 71.02 on 2 and 301098 DF, p-value: < 2.2e-16

number of non-zero loss differential points is: 301101

Mean Loss Differential:

-0.09964427

Summary of empirical variogram values:
vgram d ind d.full vgram.full

N 29.0000000 29.000000 196.000000 98.000000 98.0000000
mean 2.5232000 5.053909 1.867347 5.307258 2.6423543
Std.Dev. 0.8559370 2.020273 3.514476 1.849032 0.7723522
min 0.4037322 1.000000 -7.000000 1.000000 0.3719266
Q1 2.0856273 3.605551 0.000000 4.123106 2.2099495
median 2.8040068 5.385165 2.000000 5.656854 2.8512320
Q3 3.2010362 6.708204 5.000000 7.000000 3.2060091
max 3.4839552 8.000000 8.000000 8.000000 3.7116931
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missing values 0.0000000 0.000000 0.000000 0.000000 0.0000000
robust.vgram N dx dy

N 9.800000e+01 98.000 1 1
mean 1.880931e-08 297400.163 1 1
Std.Dev. 7.104522e-09 1377.313 NA NA
min 1.427967e-09 295020.000 1 1
Q1 1.449733e-08 296332.500 1 1
median 2.028027e-08 297256.000 1 1
Q3 2.437813e-08 298377.000 1 1
max 2.945054e-08 300600.000 1 1
missing values 0.000000e+00 0.000 0 0
Test Statistic for null hypothesis of equal predictive ability on average
[1] -0.04215516
p-value for two-sided alternative hypothesis is: 0.966375
p-value for (one-sided) alternative hypothesis that mu(D) < 0 is: 0.4831875
p-value for (one-sided) alternative hypothesis that mu(D) > 0 is: 0.5168125

Note that a test for spatial trend is performed with the results displayed in the output. The
display is for information only and is not employed within the SPCT procedure by these
functions. If a trend is present, however, it should be taken into account before applying the
SPCT as results will be erroneous if a trend is present. A trend can be subtracted out of the
field before applying the test. In this case, it does appear that a trend may be present but it
seems to be only very slight (≈ 0.0003 in the x-direction and −0.00002 in the y-direction), if
statistically significant in the x-direction (it is not significant in the y-direction). The result
of this test for comparing wrf4ncar0531 against wrf4ncep0531 relative to obs0601 under
absolute-error loss is to fail to reject H0.
Of course, the SPCT does not account for spatial alignment errors and therefore does not
circumvent the usual issues with traditional forecast verification applied to high-resolution
verification sets. Gilleland (2013a) proposed two loss functions that can be used with the
SPCT in order to adjust for displacement errors. One uses a weighted average of absolute-
error (or other) loss with the difference in distance maps as in the lower left panel of Figure 15.
Unfortunately, the distance maps have rather strong spatial dependence rendering such a test
useless. The other employs a similar weighting but instead of difference in distance maps, it
is a difference in the distance each grid point “travelled" to obtain the deformed image. The
loss function for the intensities is then applied to the deformed forecast field, rather than
the orignal one. This latter approach showed promising results. The tools to perform this
test are available in SpatialVx but require a fairly advanced user to implement. Moreover,
the uncertainty in the deformations should be considered in the final result, which adds
considerable complexity to the test.

8. Bearings and circle histograms
The material in this section is largely new in that it has not, to the best of this author’s
knowledge, been proposed in the literature. It also shows how to get more in depth with
the feature-based objects in Section 8.1. Section 8.2 shows one way that point observations
might be compared with a gridded forecast. The methods in this section are aimed at more
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Figure 21: Upper left panel is the loss differential field under absolute-error loss (i.e., |X̂(s) −
X(s)|). Upper right is a histogram of the field in the upper left (across space). Lower left is the
empirical varigoram of the loss differential field along with the fitted exponential variogram,
and bottom right is the same variogram but displayed by direction.

advanced R users.

8.1. Feature-based application

It can often be useful to understand if a forecast has any directional bias (e.g., tends to predict
rain too far to the east and north). For this purpose, the bearing and CircleHistogram20

functions from SpatialVx can be useful.
The bearing is the angle from one point in space to another relative to a reference direction.
The reference direction typically used, and the one available with bearing, is north. Figure 22
illustrates the meaning of the bearing. Notice that it is not symmetric in that the bearing
from a point s0 to another point s1 is not the same as the bearing form s1 to s0.
The following code illustrates how to find the bearing between the centroids of two matched

20bearing was adapted from code by Randy G. Bullock and CircleHistogram was contributed by Matthew
Pocernich.
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Figure 22: Illustration of the meaning of the bearing from a (point) observation station, s0,
to the nearest point within a gridded (forecast) set of points, labeled as A. Here, θ represents
the bearing with north as the reference.

features. It uses the look2 object returned by deltamm from Section 4.1. In this case,
the fourth forecast feature is matched by deltamm to the second observed feature. Note that
look2$unmatched will reveal that all observed features had a match but that the first forecast
feature was not matched to any observed features.

R> look2$matches

Forecast Observed
[1,] 4 2
[2,] 6 5
[3,] 3 1
[4,] 5 4
[5,] 2 3

R> Xftr <- look2$X.feats[[ 2 ]];
R> plot( Xftr );
R> Yftr <- look2$Y.feats[[ 4 ]];
R> plot( Yftr );
R> Xprops <- FeatureProps( Xftr );
R> Yprops <- FeatureProps( Yftr );
R> Xcen <- c( Xprops$centroid$x, Xprops$centroid$y );
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R> Ycen <- c( Yprops$centroid$x, Yprops$centroid$y );
Xcen;
Ycen;

[1] 288.3359 162.1359
[1] 283.9174 174.8739

Xprops$area;
Yprops$area;

[1] 390
[1] 230

bearing( Xcen, Ycen );

[1] -19.2617

Gbeta( Xftr, Yftr, beta = 3900 );

Observation (A) = Xftr
Model (B) = Yftr
beta = 3900
Gbeta(A,B) = 0.8245017

Component parts and asymmetric Gbeta:

nA nB nAB nA + nB - 2nAB medAB
390.0000000 230.0000000 21.0000000 578.0000000 7.0515849

medBA medAB * nB medBA * nA asymGbetaAB asymGbetaBA
7.6829529 1621.8645321 2996.3516446 0.9777140 0.9273074

The bearing between the centroids of these two matched features is about −19.16 degrees.
The larger of the two areas is 390 and supposing a displacement error of ten grid points were
considered to be too much error, Gβ is calculated using β = 390 · 10 = 3900. The resulting
value of Gβ ≈ 0.82 suggests that the match is good but not great. Notice that class( Xftr
) is "owin" and that Gbeta works on this class of object seemlessly and without providing
a threshold (it assumes the object is a binary field returned, for example, by solutionset).
The "owin" objects from look2, defining the features, are already binary so no threshold is
necessary, and Gbeta can be called directly on them.
There are not enough features within these two fields to warrant using a circle histogram.
Therefore, it will be necessary to load additional data sets. Here, the remaining eight ICP
real test cases for wrf4ncar are loaded from ICPtestcases. G from Section 5 is calculated
for the matched pairs of features but any other summary measure could be substituted.
The circle histogram re-scales these values to be

√
G as suggested in Section 5.1, which is

displayed in Figure 23. Centroid distance is used for the matching, in part for the interest of
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computational efficiency, and in part to demonstrate the centmatch function. In the analysis
below, the different initialization times are entered as different “models" into the "SpatialVx"
object hold2, which is simply for convenience. It is possible to enter them as an array with
the different initialization times in the third dimension. In this way, other actual models
could be included (also as arrays) in the list object.

R> data( "wrf4ncar0425" );
R> data( "wrf4ncar0512" );
R> data( "wrf4ncar0513" );
R> data( "wrf4ncar0517" );
R> data( "wrf4ncar0518" );
R> data( "wrf4ncar0524" );
R> data( "wrf4ncar0602" );
R> data( "wrf4ncar0603" );

R> hold2 <- make.SpatialVx( obs0601, list( wrf4ncar0425, wrf4ncar0512, wrf4ncar0513,
R> wrf4ncar0517, wrf4ncar0518, wrf4ncar0524,
R> wrf4ncar0531, wrf4ncar0602, wrf4ncar0603 ),
R> thresholds = c( 0.1, 2.1, 5.1, 20.1 ),
R> loc = loc, projection = TRUE, map = TRUE, loc.byrow = TRUE,
R> field.type = "Precipitation", units = "mm/h",
R> data.name = "ICP real cases (wrf4ncar)",
R> obs.name = "Stage II analysis",
R> model.name = c( "wrf4ncar0425", "wrf4ncar0512", "wrf4ncar0513",
R> "wrf4ncar0517", "wrf4ncar0518", "wrf4ncar0524",
R> "wrf4ncar0531", "wrf4ncar0602", "wrf4ncar0603" ) );
R> bgres <- numeric( 0 );
R> for( i in 1:9 ) {
R>
R> cat( i, "\n" );
R>
R> looki <- FeatureFinder( hold2, smoothpar = 5, thresh = 2.1, model = i );
R> looki <- centmatch( looki );
R> looki <- MergeForce( looki );
R>
R> nm <- dim( looki$matches );
R>
R> # Make sure there is at least one match.
R> if( any( nm == 0 ) ) next
R>
R> for( j in 1:nm[ 1 ] ) {
R>
R> cat( j, " " );
R>
R> Xftr <- looki$X.feats[[ looki$matches[ j, 2 ] ]];
R> Yftr <- looki$Y.feats[[ looki$matches[ j, 1 ] ]];
R>
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R> Xprops <- FeatureProps( Xftr );
R> Yprops <- FeatureProps( Yftr );
R>
R> Xcen <- c( Xprops$centroid$x, Xprops$centroid$y );
R> Ycen <- c( Yprops$centroid$x, Yprops$centroid$y );
R>
R> bval <- bearing( Xcen, Ycen );
R> gval <- TheBigG( Xftr, Yftr );
R>
R> bgres <- rbind( bgres, c( bval, c( gval ) ) );
R>
R> } # end of inner 'j' loop.
R>
R> cat( "\n" );
R>
R> } # end of outer 'i' loop.
R>
R> CircleHistogram( sqrt( bgres[,2] ), bgres[,1],
R> COLS = sequential_hcl(4, palette = "Hawaii"),
R> leg = TRUE, main = "", units = "g.p." );

Inspection of Figure 23 suggests that forecast features have centroids that do not tend to fall
in any particular direction from the observed features more than another, although the worst
matches (with

√
G > 36.99) are all directly south of the observed feature. There is a lack of

bearings between about 180 and 275 degrees.
Of course, similar issues as demonstrated in, for example, Figure 4 for image warping must
be considered. For example, should C1 be matched to the upper or lower circle from C6,
or should the two circles of C6 be “merged" and considered a single feature? If not merged,
then the choice of matching C1 to either of the two C6 circles is arbitrary and will depend
on the matching algorithm used. Because each circle is in the opposite direction, this choice
may affect the outcome of the circle histogram. In fact, if the two circles of C6 are merged,
the same problem is apparent because an arbitrary choice must be made in terms of deciding
which nearest point of C6 should the bearing be calculated from C1.21 Such considerations
should be taken into account when drawing conclusions from the circle histogram, but it does
nevertheless provide useful information; if only as a starting point to suggest where to look
for sources of error.
The feature matches represented in Figure 23 are only those features that have been matched,
and it says nothing about those features that were not matched. Nevertheless, it represents
pairs of features that are chosen by some measure, in this case centroid distance, to be well
forecasted features. The fact that there are many cases with large values of G provides
evidence that centroid distance might not be such a good measure of forecast accuracy in
terms of spatial alignments. Gilleland et al. (2020) provide numerous contrived examples

21Note that the centroid of the merged C6 example is the same as the centroid of C1 so that the centroid
distance is zero (a perfect score!) so the merged C6 would certainly be matched with C1 if using this measure
to define matches.
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Figure 23: Circle histogram of matched features for the nine ICP real cases using a smoothing
parameter of 5 grid points (abbreviated g.p.), threshold of 5.1 mmh−1, and centroid distance
for matching features. Histograms on the petals are for

√
G (see Section 5).

where the centroid distance does not give useful information about forecast accuracy, so
Figure 23 provides evidence that those types of scenarios are not unrealistic. This result does
not mean that centroid distance is not useful for matching features, however. There are many
instances where the only two features in a region are wildly different (e.g., they might have
large area differences) but being the only two features, it seems reasonable to compare them
further rather than declare them to be misses and false alarms.
The FeatureAxis function could be used on individual features in order to make circle his-
tograms of any individual-feature property (e.g., Aindex), using the orientation angle as the
petal angles, for the forecast and observed fields separately. This analysis is not carried out
here.

8.2. Point observations v. gridded forecast

Observations often come from point locations in space, rather than on a grid. Such observa-
tions may be used to inform an analysis that can be put on the same grid as the forecast, as
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Figure 24: One example from the MesoVICT core case. Precipitation is in mmh−1 and the
forecast is valid on 6 June 2007 at 0 UTC. Also shown is the VEN128 observing station
obtained from the JDC data network (Dorninger et al. 2013, 2018). The arrow points to the
nearest forecast grid point with heavy precipitation (> 5.1 mmh−1).

in the examples of this paper, but it may also be of interest to compare the point location
data directly to the forecast values on their grid.

The approach described here is similar in spirit to that of Brunet, Sills, and Casati (2018).
The idea, here, is to calculate the shortest distance and bearing from the observing station to
the nearest “event" (e.g., where the variable exceeds a high threshold). Such information can
be aggregated over many cases and displayed in a circle histogram as in the previous section.
The same uniqueness issue as before applies in that there may be more than one such nearest
location so that the choice of which to use may be arbitrary. Nevertheless, the information
provided should prove useful in diagnosing a forecasting system.

Figure 24 shows an example from the MesoVICT core case along with a station location
and an arrow displaying its bearing and distance to the nearest forecast precipitation rate
exceeding 5.1 mmh−1. Figure 25 shows the corresponding distance map (grid points; left), as
well as the distances (km) from this station to each individual grid point.
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Figure 25: Distance map (grid squares) for the field in Figure 24 using a threshold of 5.1
mmh−1 (left) and the distance (km) between the VEN128 station and each forecast grid
point.

The following code demonstrates how to find the shortest distance from an observing station
location to the nearest forecast grid point where, in this case precipitation rate, exceeds a
threshold (here 5.1 mmh−1), as well as the bearing from this station to this grid point. Data
are obtained from https://projects.ral.ucar.edu/icp/ under the “MesoVICT Cases" tab
(last downloaded on 3 April 2021). The [path] must be replaced with the specific path where
the data are downloaded to your own computer.

R> xdat <- read.table( "[path]/200706062000_ngts.txt" );
R> colnames( xdat ) <- c( "stationID", "lat", "lon", "pressureHGT",
+ "stationHGT", "visibility", "windDIR", "windSPD",
+ "airTemp", "dewptTemp", "minairTemp", "maxairTemp",
+ "pressureStationHGT", "pressureSeaLvl", "airpresstend",
+ "presstraceform", "pcprate", "pcpaccumperiod", "presentWx",
+ "mostsigWx", "pennultimatesigWx", "totcloudCVR",
+ "lowlvlcloudCVR", "cloudBSA", "lowcloudTYP", "medcloudTYP",

https://projects.ral.ucar.edu/icp/
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+ "highcloudTYP", "gustWSP" );
R> xdat[ xdat == -9990 ] <- NA;
R> xdat[ , "pcprate" ] <- xdat[ , "pcprate" ] * 10;

R> mod <- read.table( "[path]/cmh_8km_2007062100+18.dat", skip = 46 );
R> mod <- mod[, -c(3, 4, 10, 11, 14:17) ];
R> colnames( mod ) <- c( "x-coordinate (km, distance from origin)",
+ "y-coordinate (km, distance from origin)",
+ "precipitation (mm/h)", "10m u-wind (m/s)",
+ "10m v-wind (m/s)", "2m potential temperature (deg C)",
+ "2m equivalent potential temperature (deg C)",
+ "msl - pressure (hPa) reduced with model formulae",
+ "msl - pressure (hPa) reduced with std pressure reduction formulae",
+ "mixing ratio ( kg / kg * 10#(-3), post processing)",
+ "moisture flux divergence (kg / (kg * s#(-1)* 10#(-4)), post processing)" );

R> mod <- matrix( mod[,3], 209, 193, byrow = TRUE );
R> mod[ mod == 9999 ] <- NA;

R> mloc <- read.table( "[path]/VERA_8km_coordinates_lam_phi.txt" );
R> ml <- list( lon = matrix( mloc[,1], 209, 193, byrow = TRUE ),
+ lat = matrix( mloc[,2], 209, 193, byrow = TRUE ) );
R> mlr <- apply( mloc, 2, range, finite = TRUE );

R> testsite <- xdat[ xdat[,"stationID"] == "VEN128", ];

R> Zmod <- im( mod ); Zmod <- solutionset( Zmod > 5.1 );
R> ZmodDM <- distmap( Zmod ); ZmodDM <- as.matrix( ZmodDM );

R> dmod <- rdist.earth( rbind( c( 11.01372, 45.50916 ) ), mloc, miles = FALSE );
R> dmodMAT <- matrix( dmod, 209, 193, byrow = TRUE );

R> IDz <- c( ZmodDM == 0 );
R> ds <- c( ml$lon[ dmodMAT == min( c( dmod )[ IDz ] ) ],
+ c( ml$lat[ dmodMAT == min( c( dmod )[ IDz ] ) ] ) );

R> bearing( rbind( c( 11.01372, 45.50916 ) ), ds );
R> rdist.earth( rbind( c( 11.01372, 45.50916 ) ), rbind( ds ), miles = FALSE );

R> par( oma = c( 2.1, 0, 0, 0 ) );
R> map( type = "n", xlim = mlr[,1], ylim = mlr[,2] );
R> poly.image( ml$lon, ml$lat, mod, col = cl, axes = FALSE, add = TRUE,
+ xlab = "", ylab = "" );
R> arrows( x0 = 11.01372, y0 = 45.50916, x1 = ds[ 1 ], y1 = ds[ 2 ],
+ col = "darkred", lwd = 2 );
R> map( add = TRUE );
R> map.axes()
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R> image.plot( mod, col = cl, legend.only = TRUE, horizontal = TRUE );
R> points( testsite[,"lon"], testsite[,"lat"], pch = 21,
+ col = "darkred", bg = "darkred" );
R> text( 12, 46.0, labels = "VEN128", font = 2 );

R> par( oma = c( 2.1, 0, 0, 0 ) );
R> map( type = "n", xlim = mlr[,1], ylim = mlr[,2] );
R> poly.image( ml$lon, ml$lat, ZmodDM, col = cl, axes = FALSE, add = TRUE,
+ xlab = "", ylab = "" );
R> arrows( x0 = 11.01372, y0 = 45.50916, x1 = ds[ 1 ], y1 = ds[ 2 ],
+ col = "yellow", lwd = 2 );
R> map( add = TRUE );
R> map.axes()
R> image.plot( ZmodDM, col = cl, legend.only = TRUE, horizontal = TRUE );
R> points( testsite[,"lon"], testsite[,"lat"], pch = 21,
+ col = "yellow", bg = "yellow" );
R> text( 12, 46.0, labels = "VEN128", font = 2, col = "yellow" );

R> par( oma = c( 2.1, 0, 0, 0 ) );
R> map( type = "n", xlim = mlr[,1], ylim = mlr[,2] );
R> poly.image( ml$lon, ml$lat, dmodMAT, col = cl, axes = FALSE, add = TRUE,
+ xlab = "", ylab = "" );
R> map( add = TRUE );
R> map.axes()
R> image.plot( dmodMAT, col = cl, legend.only = TRUE, horizontal = TRUE );
R> points( testsite[,"lon"], testsite[,"lat"], pch = 21,
+ col = "black", bg = "yellow" );
R> text( 12, 46.0, labels = "VEN128", font = 2, col = "yellow" );

9. Summary and Discussion
This document provides background on high-resolution spatial weather forecast verification
limited to the analysis of a single snapshot in time of space. Some major methods were
described in detail, such as the feature-based and spatial alignment summary measures. Some
newer or even untested methods were presented in order to help uncover some of the challenges
inherent with evaluating a high-resolution forecast product. It is hoped that the in-depth look
at some of the existing methods may spur new ideas from readers who might wish to pursue
methodological advances in this domain. This document also serves as an introduction to
the R software package SpatialVx. Many of the utilities described have a broader application
reach than forecast verification.
A complete weather forecast system includes many components, such as the data assimilation
system, physics package, boundary conditions, and statistical post-processing. The methods
discussed here could be applied to several of these components. Moreover, a forecast system
is generally run over many time points with differing lead and cycle times (e.g., one forecast
cycle might be initialized at 0 UTC and another at 12 UTC). A forecast product might
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have unique error sources depending on the lead and cycle times and should be considered
separately. Aggregating evaluative methods over multiple cases can be challenging.
The feature-based methods provide a reasonably exhaustive set of tools for analyzing every
aspect of forecast performance and are widely used in practice. However, they also require
the user to make many decisions about how to carry out the analysis, and each decision can
have a large impact on the results. The wealth of information provided by these methods
may have to be summarized over the numerous cycles and lead times mentioned above, and
much information may be lost in this process.
If the desired outcome of a verification analysis is to rank competing forecasts, then spatial
alignment summary measures are highly useful. These methods do not suffer from the com-
plexity issue of the feature-based approaches but a single summary measure will not provide
all of the infomation about how one forecast performed better than another. That is, di-
agnostic information about forecast performance is scarce. These simple summaries provide
complementary tools to the more complex feature-based approaches.

9.1. Other appication areas and future directions

Several avenues of research in the realm of spatial verification exist and are worth exploring.
Only some such issues are briefly mentioned here. Although most methods were developed
with precipitation forecasts in mind, they generally apply to a wide array of possible vari-
ables. In fact, they have been applied in many different domains, such as hydrology (e.g.,
Koch, Jensen, and Stisen 2015; Koch, Siemann, Stisen, and Sheffield 2016; Koch, Demirel, and
Stisen 2018; Vereecken, Pachepsky, Simmer, Rihani, Kunoth, Korres, Graf, Franssen, Thiele-
Eich, and Shao 2016; Courdent, Grum, and Steen Mikkelsen 2018, where new methods have
also been developed), the Madden-Julian Oscillation (MJO) initialization (Kerns and Chen
2014), fire spread (e.g., Duff, Chong, Taylor, and Tolhurst 2012), pollutant fields (e.g., Farchi,
Bocquet, Roustan, Mathieu, and Quérel 2016), large-scale indicators for severe weather (Gille-
land et al. 2016), and synoptic-scale Rossby waveguides (e.g., Giannakaki and Martius 2016).
Nevertheless, precipitation has been the application area where the methods are used most
often, leaving room for modifications of the techniques to suit other variables.
Many forecast systems provide probabilistic forecast information, often via ensemble fore-
casts. Examples from the literature include Basu, S. and Dodov, B. and Foufoula-Georgiou,
E. (2003); Ben Bouallègue and Theis (2014); Gallus (2010); Vich, Romero, and Homar (2011-
11-01); Duc, Saito, and Seko (2013); Dey, Leoncini, Roberts, Plant, and Migliorini (2014);
Fox, Micheas, and Peng (2016); Mittermaier and Csima (2017) and Radanovics et al. (2018).
Climate is an arena that is particularly well suited for spatial-verification use because the
numbers of models to be evaluated is typically fewer than in weather forecast verification,
although this point may be changing, as for example, with some of the new model inter-
comparison projects. Examples of spatial verification use in climate include: De Sales and
Xue (2010); Moise and Delage (2011); Kwiotkowski et al. (2014); Lockhoff, Zolina, Simmer,
and Schulz (2014); Siongco et al. (2014); Yorgun and Rood (2014); De Haan et al. (2015);
Hobæk Haff et al. (2015); Konca-Kedzierska (2015) and Gilleland et al. (2016).
Some discussion of comparing point observations with a gridded forecast was given here but
generally, SpatialVx is aimed at verification sets (i.e., a forecast product and an observa-
tion whereby the forecast is valid at the same time as the observation occurs) where both
the forecast and observation are gridded on the same regular grid. Tustison, Harris, and
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Foufoula-Georgiou (2001) discuss the issue of representativeness error between forecasts and
observations.
Related to the issue of having both the observed and forecast fields on the same regular grid
concerns the type of grid itself. As forecast systems move to a more natural mesh, some of the
computational tricks used with SpatialVx may no longer apply, or may need to be updated.
As mentioned above, a forecast system might cover multiple points in time. One way to handle
this situation is to employ boxplots to show the distribution of spatial summary measures
across time. Another solution is to aggregate the information across time, which may lead to
loss of information. A third, more difficult solution, is to incorporate both space and time into
the evaluation. A few examples in the literature include, MODE Time-Domain (e.g., Clark,
Bullock, Jensen, Xue, and Kong 2014), which treats forecast features as three-dimensional
geometric shapes through space and time, and image warping (e.g., Gilleland et al. 2010b),
which is a natural extension of the image warping procedure from two-dimensional space to
three-dimensional space. Beyond employing boxplots, the latter two approaches are ripe for
further research.

Inference for spatial verification
As mentioned in Section 7, there is a distinct lack of inference methodology associated with
most of the various spatial verification approaches. Image warping (as well as the closely
related shape analysis) is an exception in that it is set up in a classical statistical modeling
framework that is similar to a regression model. Therefore, it is possible to derive parametric
inferential procedures based on distributional assumptions. Penalized likelihood or Bayesian
estimation are the most natural choices for estimating the model because of the need to
penalize non-physical deformations. However, for most other methods, there is no elegant
statistical model from which to base inference. Spatial fields in meteorological data sets
tend to be very large so that any inferential procedure must be computable in an efficient
manner, and although many such methods exist (see Heaton, Datta, Finley, Furrer, Guiness,
Guhaniyogi, Gerber, Gramacy, Hammerling, Katzfuss, Lindgren, Nychka, Sun, and Zammit-
Mangion 2019, for a thorough review) for Gaussian distributed data, many of the important
meteorological fields do not readily present themselves for such treatment.22 Because many
procedures involve binary fields, a spatial Poisson process (or similar) may be appropriate as
a starting point.
Surrogate fields are often used in image analysis and computer vision and could be an avenue
for obtaining uncertainty information for the various spatial verification methods as they re-
produce the spatial distribution of the spatial field. Venugopal, Basu, and Foufoula-Georgiou
(2005) use them to normalize their foreast quality index (FQI) by a representative measure.23

Despite that this approach produces realistic spatial fields with reasonable distributional
properties, they do not typically make physical sense.
In particular, Figure 26 shows one realization of a surrogate field obtained from the obs0601
field shown in the top left panel of Figure 3. Clearly, there is little resemblance between this
field and that of obs0601. The large amount of small-intensity noise can be removed, but

22Gilleland et al. (2010c) employ a Markov random field approach to the estimation of the deformations in
their image warping procedure, but stopped short of carrying out any inference.

23The FQI measure introduced by Venugopal et al. (2005) incorporates intensity and a spatial displacement
summary. The FQI is not discussed in this document but is available with SpatialVx through the function
FQI. Its help file should be sufficient to learn how to apply the function.
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Figure 26: Example of one surrogate realization from the 1 June 2005 analysis example
shown in the top left panel of Figure 3.

resulting features will not only be more numerous and in very different locations but may not
resemble the original properties enough so as to provide meaningful uncertainty estimates.

The code to produce surrogate fields using SpatialVx is shown below. The returned object, Z,
is an array with dimensions 601×501×10 where the third dimension gives the ten realizations
(the default value for argument n is ten).

R> Z <- surrogater2d( Im = obs0601 );
R> map( type = "n", xlim = lr[,1], ylim = lr[,2] );
R> poly.image( l$lon, l$lat, Z[,,1], col = cl,
+ xlab = "", ylab = "", axes = FALSE, add = TRUE );
R> map( add = TRUE, database = "state" );
R> map.axes()
R> image.plot( Z[,,1], col = cl, legend.only = TRUE );
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