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•  What does RMSE = 25 mean? 
•  Is 25 a good value? (What is “good”?) 
•  Is 25 better than 30? 

Answer: It depends!! 
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Accounting for Uncertainty 
•  Observational 
•  Model 

–  Model parameters 
–  Physics 

•  Sampling 
–  Verification statistic is a realization of a random 

process 
–  What if the experiment were re-run under identical 

conditions? 
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Hypothesis Testing and 
Confidence Intervals 

•  Hypothesis testing 
–  Given a null hypothesis (e.g., “Model forecast is un-biased”), 

is there enough evidence to reject it? 
–  Can be One- or two-sided 
–  Test is against a single null hypothesis. 

•  Confidence intervals 
–  Related to hypothesis tests, but more useful. 
–  How confident are we that the true value of the statistic (e.g., 

bias) is different from a particular value? 
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Example: The difference in bias between 
two models is 0.01. 

Hypothesis test: Is this different from 
zero? 

Confidence interval: Does zero fall within 
the interval?  Does 0.5 fall within the 
interval? 

Hypothesis Testing and 
Confidence Intervals 
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Confidence Intervals (CI’s) 
“If we re-run the experiment 100 

times, and create 100 (1-α)100% 
CI’s, then we expect the true 
value of the parameter to fall 
inside (1-α)100 of the intervals.” 

Example: 95% CI has α=0.05, and 
it is expected that 95 of the 100 
intervals would contain the true 
parameter. 
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Confidence Intervals (CI’s) 
•  Parametric 

–  Assume the observed sample is a realization from 
a known population distribution with possibly 
unknown parameters. 

–  Normal approximation CI’s are most common. 
–  Quick and easy. 
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Confidence Intervals (CI’s) 
•  Nonparametric 

–  Assume the distribution of the observed sample is 
representative of the population distribution. 

–  Bootstrap CI’s are most common. 
–  Can be computationally intensive, but easy 

enough. 



Normal Approximation CI’s 
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Estimate 
Standard normal 

variate 

(Estimated) 
standard error of 

true parameter 
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Example: Let         be an independent 
and identically distributed (iid) sample from a 
normal distribution with variance       . 

  Then,                    is an estimate of the mean 

of the population.  A (1-α)100% CI for the mean 
is given by 

Normal Approximation CI’s 

Note:  You can find 
much more about these 

ideas in any basic 
statistics text book 



Normal Approximation CI’s 
•  Numerous verification statistics can take 

this approximation in some form or another 
– Alternative CIs are available for other types of 

variables  
•  Examples: forecast/observation variance, linear 

correlation 
•  Still relies on the underlying sample’s being iid 

normal. 

•  Many contingency table verification scores 
also have normal approximation CI’s     
(for large enough sample sizes) 
– Examples:  POD, FAR 
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Application of Normal Approximation CI’s 
•  Independence assumption (i.e., “iid”) – temporal and spatial 

–  Should check the validity of the independence assumption. 
–  Methods exist that can take into account dependencies. 

•  Normal distribution assumption 
–  Should check validity of the normal distribution (e.g., qq-plots). 

•  Multiple testing 
–  When computing many confidence intervals, the true significance 

levels are affected (reduced) by the number of tests that are done. 
–  Similar with confidence intervals: point-by-point intervals versus 

simultaneous intervals. 
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Simulation Example 
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Mean Error Frequency Bias 
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IID Bootstrap Algorithm 

(Nonparametric) 
Bootstrap CI’s 

1.  Resample with replacement from the sample,  
           , 

2.  Calculate the verification statistic(s) of interest, say  
θ, from the resample in step 1, 

3.  Repeat steps 1 and 2 many times, say B times, to 
obtain a sample of the verification statistic(s),  

4.  Estimate (1-α)100% CI’s from the sample in step 3.  



Empirical Distribution (Histogram) of 
statistic calculated on repeated samples  
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5% 5% 

Bounds for 
90% CI 

Values of statistic θ 
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Bootstrap CI’s 
IID Bootstrap Algorithm: Types of CI’s 

1.  Percentile Method CI’s 

2.  Bias-corrected and adjusted (BCa) 

3.  ABC 

4.  Basic bootstrap CI’s 

5.  Normal approximation 

6.  Bootstrap-t 
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Simulation Example 
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Simulation Example (95% CI’s) 
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Mean Error (0.79) 
(0.30, 1.28) 

Normal Approximation 

Frequency Bias (1.60) 
(1.02, 2.18) 

Bootstrap (BCa) 

Mean Error (0.79) 
(0.30, 1.24) 

Frequency Bias (1.60) 
(1.21,2.20) 



Bootstrap CI’s 

Sample size  
Use same sample size as the original 

sample 
– Sometimes better to take                                                         

smaller samples (e.g.,                          
heavy-tailed distributions;                       
see Gilleland, 2008).  
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Effect of Dependence 
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Effect of Dependence (95% CI’s) 
Normal CI 
(-0.27, -0.06) 

Normal CI  
(w/ variance inflation)* 
(-0.47, 0.14) 

*See Gilleland (2010a), sec. 2.11 
**sec. 3.4 

Bootstrap CI (BCa) 
(-0.27, -0.06) 

Bootstrap CI (block)** 

(-0.47, 0.11) 

Mean = -0.17 



Bootstrapping in R 
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booter <- function( d, i) { 
   A <- verify( d[i, “Observed”], d[i, “Forecast”], 

  frcst.type=“cont”, 
  obs.type=“cont”) 

   return(c( A$MAE, A$ME, A$MSE)) 
} # end of ‘booter’ function. 

Function to compute the statistic(s) of 
interest.  In this case, MAE, ME and 
MSE.  
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Bootstrapping in R 

library( verification) 
library( boot) 
booted <- boot( Z, booter, 1000)  

Load the ‘verification’ and ‘boot’ 
packages, and use the ‘boot’ function 
from this package to resample the data 
‘Z’, calculating the statistics via the 
‘booter’ function for each of 1000 
iterations. 
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Bootstrapping in R 
MAE.ci <- boot.ci( booted, conf=c(0.95, 0.99, 0.999), 

   type=c(“perc”, “bca”), index=1) 

ME.ci <- boot.ci( booted, conf=c(0.95, 0.99, 0.999), 
   type=c(“perc”, “bca”), index=2) 

MSE.ci <- boot.ci( booted, conf=c(0.95, 0.99, 0.999), 
   type=c(“perc”, “bca”), index=3) 

Find the 95-, 99- and 99.9% percentile and BCa 
CI’s for each statistic.  
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Bootstrapping in R 
Accounting for dependence 

booter.cbb <- function( data) { 
   A <- verify( data[,”Observed”], 

  data[,”Forecast”], 
  frcst.type=“cont”, 
  obs.type=“cont”) 

   return( c(A$MAE, A$ME, A$MSE)) 
} # end of ‘booter.cbb’ function.  

Function to calculate the statistic(s) 
of interest for a dataset, data.  Here 
MAE, ME and MSE are calculated. 
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Bootstrapping in R 
Accounting for dependence 

booted.cbb <- tsboot( Z, booter.cbb, R=1000, 
   l=floor( sqrt( dim(Z)[1])), 
   sim=“fixed”) 

Use ‘tsboot’ function to obtain 1000 block 
resamples of these statistics using the circular 
block bootstrap (CBB) approach (sim=“fixed”).  
Use block sizes that are the greatest integer 
less than the square root of the length of the 
dataset.   
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Bootstrapping in R 
Accounting for dependence 

Calculate 95-, 99- and 99.9% 
CI’s. 

MAE.ci.cbb <- boot.ci( booted.cbb,  
   conf=c(0.95, 0.99, 0.999), 
   type=“perc”, index=1) 

ME.ci.cbb <- boot.ci( booted.cbb,  
   conf=c(0.95, 0.99, 0.999), 
   type=“perc”, index=2) 

MSE.ci.cbb <- boot.ci( booted.cbb,  
   conf=c(0.95, 0.99, 0.999), 
   type=“perc”, index=3) 
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Thank you.  Questions? 
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