Extreme behavior of large-scale indicators for severe weather

Eric Gilleland

Research Applications Laboratory, National Center for Atmospheric Research

Elizabeth Mannshardt-Shamseldin and Richard L. Smith Joint advising for the Industrial Mathematical and Statistical Modeling Graduate Student Workshop (IMSM)

Support from Weather and Climate Impacts Assessment Science (WCIAS) Initiative (http://www.assessment.ucar.edu)

Severe weather typically on fine scales

Historical records limited

Weak relationship with larger-scale phenomena

Concurrently high values of CAPE (J/kg) and shear (m/s) found to be indicative of conducive environments for severe weather

(e.g., Brooks et al., 2003)

Definitons for categories of severe storms.

Definitions for eace-offer of severing.	
Non-severe	hail < 1.9 cm. $(3/4$ in.) diameter
	winds < 55 kts. no tornado
Severe	$Hail \ge 1.9 \text{ cm. diameter}$
	winds ≤ 55 kts. and < 65 kts. or tornado
Significant	$Hail \ge 5.07 \text{ cm. } (2 \text{ in.}) \text{ diameter}$
Non-tornadic	Winds ≥ 65 kts.
Significant	Same as sig. tornadic with F2 (or greater) tornado.
Tornadic	

$$W_{max} = \sqrt{2 \cdot CAPE}$$

$$(m/s)$$

CAPE (W_{max}) and 0-6 km shear data, or indeed, output

Reanalysis "data" are on a $1.875^{\circ} \times 1.915^{\circ}$ lon-lat grid with over 17 thousand points covering the globe, and temporal spacing every 6 hours for 42 years (1958-1999). Further details about the reanalysis data can be found in Brooks et al. (2003).

Current climate output from the CCSM3 model for 756 grid points at $1.4^{\circ} \times 1.4^{\circ}$ resolution over the United States, with temporal spacing of 6 hourly points for 20 years from 1980-1999.

Goals/Questions

Societal Impacts

- What can be said about severe weather under a changing climate?
 - Will such events happen more/less frequently?
 - Will they be more/less intense?
- How well does the climate model output characterize the large-scale indicators? How can this be verified?

Preliminaries

GEV-estimated 20-year Return Levels Reanalysis CCSM3

Are there resolutions/thresholds where CCSM3 matches well with reanalysis?

Approach:

- Focus on comparisons of various GEV (GPD) estimated extreme return levels (here 20-, 50- and 100-year).
- Use thin-plate spline to smooth each field of return levels, and make comparisons between these smoothed fields for values above different thresholds.
- Calculate Baddeley's Δ metric (Baddeley, 1992b,a) for each smoothed field/threshold to investigate how similar the spatial patterns for the two fields are.
- Calculate RMSE for each smoothed field/threshold to investigate whether there is any skill at any resolution and intensity level.

Are there resolutions/thresholds where CCSM3 matches well with reanalysis?

Rows:

Reanalysis (top) and CSM3 (bottom)

Columns:

Thin-plate spline predicted fields using 100 (left), 2000 (middle) and 3000 (right) degrees of freedom.

Are there resolutions/thresholds where CCSM3 matches well with reanalysis?

Lower values better

Are there resolutions/thresholds where CCSM3 matches well with reanalysis?

Summary and Future Work

- Want to learn about how a changing climate will affect severe weather.
- Climate models at too coarse scales to resolve the very fine scale severe weather phenomena. One approach is to use large-scale indicators (e.g., Wmax and shear).
- Global reanalysis data set may reasonably represent intensities. Some problems in different parts of the globe. Mostly unimportant, but spatial displacement errors on lee-side of Rocky Mountains.
- Look at bivariate distributions of Wmax and shear; compare with univariate approach (i.e., Wmax × shear).
- Investigate trends in frequency and intensity of extreme values of the indicators.

. . .

Thank you, that's all

Questions?

References

- Baddeley, A., 1992a. An error metric for binary images. Forstner and S. Ruwiedel (ed.) Robust Computer Vision Algorithms, Proceedings, International Workshop on Robust Computer Vision, Bonn. Karlsruhe: Wichmann, 559-78.
- Baddeley, A., 1992b. Errors in binary images and an l_p version of the hausdorff metric. Nieuw Archief voor Wiskunde 10, 157–183.
- Brooks, H., Lee, J., Craven, J., 2003. The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmos. Res. 67–68, 73–94.