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Brief Overview of Spatial Extremes Methods

• Multivariate Extremes and max-stable processes

• Copulas (e.g., Renard and Lang, 2006; Mikosch, 2006, and ensuing
discussions).

• Regional Frequency Analysis (RFA)

• Loss function approach (IWQSEL), e.g. Craigmile et al. (2006)

• Upcrossings (e.g., Åberg and Guttorp, 2008, and references therein)

• Bayesian (e.g., Casson and Coles, 1999; Cooley et al., 2007)

• Spatio-temporal Models (e.g., Davis and Mikosch, 2006; Wikle and
Cressie, 1999)

• EVD with Spatial Model on Parameters
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Brief Overview: Multivariate Extremes

Coles (2001, chapter 8)

Schlather and Tawn (2003)

Max-stable processes
Smith (1990, and references therein)
Schlather (2002, and references therein)
Cooley et al. (2006)
Conditional approach
Heffernan and Tawn (2004, and ensuing discussions),
see also Mendes and Pericchi (2008)
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Brief Overview: Regional Frequency Analysis (RFA)

Hosking and Wallis (1997)

Flood maps
Daly et al. (2002)
Daly et al. (1994)
Sveinsson et al. (2002)

Precipitation
Schaefer (1990)
Fowler et al. (2005)
Fowler and Kilsby (2003)
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic

North Carolina Three sites

FHDA – Fourth Highest Daily maximum 8-hr Average ozone
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic

Spatial AR(1) Monte Carlo (Gilleland and Nychka, 2005)

GPD with spatial model on scale parameter (Gilleland et al., 2006)

Pr {FHDA1997 > 80}
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic

Spatial AR(1) Monte Carlo

y(s; t) = σ(s)u(s; t) + µ(s; t)

u(s; t) = ρ(s)u(s; t− 1) + ε(s; t)

ε(·; t) ∼ Gau (0, Σ)
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic

Spatial AR(1) Monte Carlo

Σ = [cov(si, sj)] ,

cov(si, sj) = ψ(h) (Stationary).
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo

cov (u(s; t), u(s′; t− τ )) =
(ρ(s))τ

√
1− ρ2(s)

√
1− ρ2(s′)

1− ρ(s)ρ(s′)
ψ(h),

for τ ≥ 0.

If ρ(s) = ρ, then cov (u(s; t), u(s′; t− τ )) = ρτψ(h).
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo

ψ(h) = α exp

(
− h

θ1

)
+(1−α) exp

(
− h

θ2

)
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo

ψ(h) = α exp

(
− h

θ1

)
+ (1− α) exp

(
− h

θ2

)

Here: α̂ ≈ 0.13 (±0.02), θ̂1 ≈ 11 miles (±3.37 miles) and θ̂2 ≈ 272
miles (±16.89 miles).

Uncertainty via parametric bootstrap.
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo
Algorithm to predict FHDA at unobserved location(s), s0.

1. Simulate u(s0; t) for an entire ozone season

(a) Interpolate spatially from u(s, 1) to get û(s0, 1).
(b) Also interpolate spatially to get ρ̂(s0), µ̂(s0, ·) and σ̂(s0).
(c) Sample shocks at time t from [ε(s0, t)|ε(s, t)].
(d) Propagate AR(1) model.
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo
Algorithm to predict FHDA at unobserved location, s0.

1. Simulate u(s0; t) for an entire ozone season.

2. Back transform ŷ(s0, t) = û(s0, t)σ̂(s0) + µ̂(s0, t)

3. Take fourth-highest value from Step 2.

4. Repeat Steps 1 through 3 many times to get a sample of FHDA
at unobserved location(s).
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo
Distribution for the AR(1) shocks
[ε(s0, t)|ε(s, t)] (Step 1c) given by

Gau(M ,Σ)

with
M = k′(s0, s)k−1(s, s)ε(s, t)

and
Σ = k′(s0, s0)− k′(s0, s)k−1(s, s)k(s, s0),

where k(x,y) = [ψ(xi,yj)] the covariance matrix for two sets of
spatial locations.
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo
Results of predicting FHDA spatially with daily model (1997)
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
Spatial AR(1) Monte Carlo
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter
Given a spatial process, Z(s), what can be said about

Pr{Z(s) > z}

when z is large?
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter
Given a spatial process, Z(s), what can be said about

Pr{Z(s) > z}

when z is large?

Note:
This is not about dependence between Z(s) and Z(s′)–this is another
topic!
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter
Given a spatial process, Z(s), what can be said about

Pr{Z(s) > z}

when z is large?

Note:
This is not about dependence between Z(s) and Z(s′)–this is another
topic!

Spatial structure on parameters of distribution (not FHDA).
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter

For a (large) threshold u, the GPD is given by

Pr{X > x|X > u} ≈ [1 +
ξ

σ
(x− u)]−1/ξ
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter

Observation Model:
y(s, t) surface ozone at location s and time t

[y(s, t)|σ(s), ξ(s), u, y(s, t) > u]

Spatial Process Model:

[σ(s), ξ(s), u|θ]

Prior for hyperparameters:

[θ]
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter
A Hierarchical Spatial Model
Assume extreme observations to be conditionally independent so that
the joint pdf for the data and parameters is

∏
i,t

[y(si, t)|σ(s), ξ(s), u, y(si, t) > u] [σ(s), ξ(s), u|θ] [θ]

t indexes time and i stations.
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter
Shortcuts and Assumptions

• Assume threshold, u, fixed.

• ξ(s) = ξ (i.e., shape is constant over space). Justified by univariate
fits.

• Assume σ(s) is a Gaussian process with isotropic Matérn covari-
ance function.

• Fix Matérn smoothness parameter at ν = 2, and let the range be
very large–leaving only λ (ratio of variances of nugget and sill).
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A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter
More on σ(s)

σ(s) = P (s) + e(s) + η(s)

with P a linear function of space, e a smooth spatial process, and η
white noise (nugget).

λ is the only hyper-parameter

• As λ −→ ∞, the posterior surface tends toward just the linear
function.

• As λ −→ 0, the posterior surface will fit the data more closely.

25



26



A couple of simple approaches

Spatial Distribution for fourth-largest order statistic
GPD with spatial model on scale parameter
log of joint distribution

n∑
i=1

`GPD(y(si, t), σ(si), ξ)−

λ(σ −Xβ)TK−1(σ −Xβ)/2− log(|λK|) + C

K is the covariance for the prior on σ at the observations.

This is a penalized likelihood:
The penalty on σ results from the covariance and smoothing param-
eter λ.
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Probability of exceeding the standard
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Conclusions and Possible Extensions

Spatial AR(1) Monte Carlo

• Each part simple, but can model relatively complex processes

• Lower CV than naïve approach assuming FHDA∼ Gau(M ,V )

• Computationally intensive

• Prediction standard errors too optimistic?

• Let u(s; t) = ρ(s)u(s; t− 1) + βε1(s; t) + (1− β)ε2(s; t)

• Allow ψ to be nonstationary for larger domains

• Incorporate meteorological covariates
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Conclusions and Possible Extensions

GPD with spatial model on scale parameter

• Simple extension to independent fits at each spatial location

• Compares relatively well with spatial AR(1) Monte Carlo approach

• Direct use of EVA

• More difficult if region is not homogeneous

• Does not model the underlying process spatially

• Apply spatial model to the return levels instead of the parameters

• Incorporate meteorological covariates
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That’s it...

References will be posted on my web page at

http://www.ral.ucar.edu/~ericg

Questions/Comments
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Brief Overview: Multivariate Extremes

General Formulation

lim
n−→∞

(
Pr

[
Mn1(x1)− bn1

an1
≤ x1, . . . ,

Mnd(xd)− bn1

an1
≤ xd

])
=

G(x1, . . . , xd),

where xi = (x1i, . . . , xni) are iid d−dimensional random vectors,
Mni(xi) = max

j=1,...,n
(xji), an1, . . . , and > 0 and bn1, . . . , bnd are

normalizing constants, and G is a non-degenerate d−dimensional cdf.
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Brief Overview: Multivariate Extremes

General Formulation
Simplify by assuming each xi has a standard Fréchet marginal cdf.
Then,

G(x1, . . . , xd) = exp{−V (x1, . . . , xd)},

where

V (x1, . . . , xd) =

∫
max
j=1,...,d

{
wj
xj

}
dH(w1, . . . , wd)
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Brief Overview: Multivariate Extremes

General Formulation
Extremal coefficient measures dependence in the tails.

θ =

∫
max
j=1,...,d

wjdH(w1, . . . , wd)
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Brief Overview: Copulas

General Formulation
X = (X1, . . . , Xd) a d−dimensional random vector with cdf

F (x1, . . . , xd) = Pr (X1 ≤ x1, . . . , Xd ≤ xd) .

A copula is a function, c, s.t. c : [0, 1]d 7→ [0, 1] and

F (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
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Brief Overview: Copulas

Assuming the marginal distributions Fi, then

• c exists, and

• if the Fi’s are continuous, then c is unique.

• The dependence structure of X can be reconstructed from the
copula and the Fi’s.
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Brief Overview: Regional Frequency Analysis (RFA)

General Formulation
Multiple-step procedure:

1. Determine relatively homogeneous regions.

2. Normalize annual maxima series by an index (flood) measure.

3. Fit a distribution (e.g., GEV) to pooled dimensionless sample.

4. Scale distribution from 3 by indexes from 2 to get local
distributions.
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Brief Overview: Regional Frequency Analysis (RFA)

• L-moments used for parameter estimation.

• Criteria based on L-moments are suggested for selecting homoge-
neous regions and for choosing a probability distribution.

• Uncertainty obtained via bootstrap methods.
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