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The Extremes Toolkit is an interactive software package for analyzing extreme value data " Il est impossible que
1'improbable n'arrive

using the R statistical programming language. In R, the package name is extRemes, and is
written and maintained by Eric Gillel with assi from Rick Katz. Initial work was done Jamais.®
Emil Gumbel

by Greg Young. Primarily, extRemes uses functions from the R package ismev, the R port (by
Alec Stephenson), of Stuart Coles' S-Plus functions; who we thank for his permission in using

the ismev functions.
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Background on Extreme Value Analysis (EVA)

Motivation

Central Limit Theorem Extremal Types Theorem

—— Reverse Weibull (upper bound)
—— Gumbel (light tails)
Frechet (lower bound, heavy upper tail)

— Normal (light tail)

Sums/Averages Maxima,/Minima (threshold excesses)



Background on Extreme Value Analysis (EVA)

Motivation

Sums,/ Averages Maxima (Minima)/Threshold Excesses

averages

outliers outliers extremes outliers extremes




Background on Extreme Value Analysis (EVA)

Simulations
Maxima from N(0,1) Maxima from Unif(0,1)
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Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Let Xq,..., X, be a sequence of independent and identically distrib-
uted (iid) random variables with common distribution function, F.
Want to know the distribution of

M, = max{Xy,..., X, }.

Example: X, ..., X, could represent hourly precipitation, daily ozone
concentrations, daily average temperature, etc. Interest for now is in
maxima of these variables over particular blocks of time.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

If interest is in the minimum over blocks of data
(e.g., monthly minimum temperature), then note that

min{ Xy, ..., X,} = —max{—X1,..., - X}

Therefore, we can focus on the maxima.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Could try to derive the distribution for M,, exactly for all n as follows.

Pr{M, < z} = Pr{X; <z ..., X, <z}

indep. Pr{X; <z} x -+ x Pr{X, < 2}

ident. dist. .
= {F@E)"



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Could try to derive the distribution for M,, exactly for all n as follows.

Pr{M, < z} = Pr{X;<z...,X, <z}

indep. Pr{X; < 2} x -+ x Pr{X, < 2}

ident. dist. .
= {F(2)}"
But! If F'is not known, this is not very helpful because small

discrepancies in the estimate of F' can lead to large discrepancies
for F™.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

Could try to derive the distribution for M,, exactly for all n as follows.

Pr{M, < z} = Pr{X;<z...,X, <z}

indep. Pr{X; < 2} x -+ x Pr{X, < 2}

ident. dist. .
= {F@E)"

But! If F'is not known, this is not very helpful because small
discrepancies in the estimate of F' can lead to large discrepancies

for F™.
Need another strategy!



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

[f there exist sequences of constants {a,, > 0} and {b,} such that
Mn - bn
Pr{— < z} — G(z) as n — 00,
an

where GG is a non-degenerate distribution function, then G belongs to
one of the following three types.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

[. Gumbel

T R | | R

[I. Fréchet

0, z < b,

Gle) = { exp {— (ZT_b)_a} oz > b

G(z) = { exp {— [~ ()]}, = <0,

1, z2>b

[T1. Weibull

with parameters a, b and a > 0.



Background on Extreme Value Analysis (EVA)

Extremal Types Theorem

The three types can be written as a single family of distributions,
known as the generalized extreme value (GEV) distribution.

G2 eXp{_ 1+ (Z;”)L%},

where y, = max{y,0}, —oo < u,§ < oo and o > 0.




Background on Extreme Value Analysis (EVA)

GEV distribution

Three parameters: location (i), scale (o) and shape (£).
1. £ = 0 (Gumbel type, limit as & — 0)
2. & > 0 (Fréchet type)
3. & < 0 (Weibull type)



Background on Extreme Value Analysis (EVA)

Gumbel type

e Light tail

e Domain of attraction for many common distributions
(e.g., normal, lognormal, exponential, gamma)

Gumbel

0.5

0.4
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0.3
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0.1

0.0




Background on Extreme Value Analysis (EVA)

Fréchet type

e Heavy tail
o £/ X" = oo for r > 1/€ (i.e., infinite variance if & > 1/2)

e Of interest for precipitation, streamflow, economic impacts

Frechet

par
0.0 0.1 0.2 0.3 04 05 0.6




Background on Extreme Value Analysis (EVA)

Weibull type

e Bounded upper tail at u — %

e Of interest for temperature, wind speed, sea level

Weibull

par
02 03 04 05

0.1

0.0




Background on Extreme Value Analysis (EVA)

Normal vs. GEV

Pr{X >} 1 2 4 8 16 32
N(0,1) 0.16 | 0.02 | <107* | <1075 | <1070 | < 10200
Gumbel(0,1) 0.31 | 0.13 | 0.02 <107% | <107% | <107°®8
Fréchet(0,1,0.5) | 0.36 | 022 | 0.11 0.04 0.01 0.003
Weibull(0,1-0.5) | 0.22 | 0 0 0 0 0




Example

Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)
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Source: U.S. National Weather Service Forecast office at the Phoenix Sky Harbor Airport (via extRemes).



Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)

Demo: Reading in the HEAT data to extRemes



Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)

Demo:

ls, class, names, colnames, dim, ...



Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)

Demo: Scatter (line) plot using extRemes



Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)

Demo: take the negative of the minimum temperatures.



Example

Fort Collins, Colorado precipitation

What sort of extreme temperatures can we expect in Phoenix?

e Assume no long-term trend emerges (for now).
e Using annual maxima removes effects of annual trend in analysis.

e Annual Maxima/(negative) Minima fit to GEV.

Demo: Fitting a (stationary) GEV to maxima and (negative) minima.



Command-line Code Executed

To see the (underlying) code used to execute this fit, look at the
extRemes. log file found in your working R directory (use getwd()
to find this directory).

Should periodically clear this file because it will get larger as more
commands are executed.

File ‘ Plot| Analyze "

Read Data
Simulate Data

Decluster |
Transform Data

Data Summary

scrubber
Clear log file



Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)

Demo: Estimate 95% CI’s for shape parameter using profile likelihood.

X Extremes Toolkit: version 1.60

File | Plot| Analyze |
The Extr Generalized Extreme Value (GEV) Distribution
Weather a rth Largest Order Statistics Model -atistics
Poisson Distribution
Type ‘he Generalized Pareto Distribution (GPD)
to get st _ |
Point Process Model

http: //fw
Parameter Confidence Intervals T GEV fit



Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)

Demo: Return Levels
X B
Filel Plotl Analyze‘

The Scatter Plot
Weatl nean Residual Life Plot

Typ Fit threshold ranges (GPD)
to @ Fit threshold ranges (PP)

g _. .
Fit Diagnostics
Fit with Histogram
Return Level Plot




Phoenix Sky Harbor airport summer (July-August)
1948-1990 maximum (and minimum) temperature (°F)

Return Levels

Demo proﬁle likelihood to determine CI’s for longer return periods.

X Extremes Toolkit: version 1.60

File | Plotl analyze |

The Extr Generalized Extreme Value (GEV) Distribution
Weather 2yt | argest Order Statistics Model -atistics
Poisson Distribution
Type ‘he Generalized Pareto Distribution (GPD)
to get st
Point Process Model

http: //fw
Parameter Confidence Intervals T GEV fit



Peaks Over Thresholds (POT) Approach

Let X4, Xo,... be an iid sequence of random variables, again with
marginal distribution, F'. Interest is now in the conditional probabil-
ity of X's exceeding a certain value, given that X already exceeds a
sufficiently large threshold, u.

1—F(u+y)
1 — F(u)

Pr{X >u+y|X >u} = yy >0

Once again, if we know F', then the above probability can be com-
puted. Generally not the case in practice, so we turn to a broadly
applicable approximation.



Peaks Over Thresholds (POT) Approach

If Pr{max{Xy,..., X,} <z} = G(z), where

G(s eXp{_ 1+ (zgu)ll/ﬁ}

for some pu, & and o > 0, then for sufficiently large u, the distribution

(X — u|X > ul, is approximately the generalized Pareto distribution
(GPD). Namely,

—1/¢

9/ 4

with ¢ = o+ &(u — p) (o, € and p as in G(2) above).




Peaks Over Thresholds (POT) Approach

GPD
e Pareto type (£ > 0) o
hem}y tal ° — Pareto (xi>0)
0 | —— Beta (xi<0) !
e Beta type (£ < 0) o Exponential (xi=0)
bounded above at < |
U — 0-/5 5
e Exponential type (£ = 0) °
light tail s
3|
o ||




Peaks Over Thresholds (POT) Approach

Choosing a threshold

Variance /bias trade-off

Low threshold allows for more data (low variance).
Theoretical justification for GPD requires a high threshold (low bias).

X/| Extr

File | Plot| Analyze |
The Scatter Plot es
Weatl pean Residual Life Plot on

Typ: Fit threshold ranges (GPD)  |or
Lo @ Fit threshold ranges (PP) =

du

g _ .
Fit Diagnostics
Fit with Histogram
Return Level Plot




Peaks Over Thresholds (POT) Approach

Choosing a threshold

Demo: Choosing a threshold.



Peaks Over Thresholds (POT) Approach

Dependence above threshold
Often, threshold excesses are not independent. For example, a hot

day is likely to be followed by another hot day:.

Various procedures to handle dependence.
File | Plot| Analyze |

e Model the dependence.

Read Data 1
: . . .t

e De-clustering (e.g., runs de-clustering). Simulate Data
e Resampling to estimate standard errors Decluster :

(avoid tossing out information about extremes).



Peaks Over Thresholds (POT) Approach

Dependence above threshold

Phoenix airport
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Phoenix (airport) minimum
temperature (°F).

July and August 1948-1990.

Urban heat island (warming
trend as cities grow).

Model lower tail as upper tail
after negation.



Peaks Over Thresholds (POT) Approach

Dependence above threshold

Fit without de-clustering.
(A{ ~ 3.93
&~ —0.25

With runs de-clustering (r=1).
o~ 4.21
£~ —0.25



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses

Event is a threshold excess (i.e., X > u).

Frequency of occurrence of an event (rate parameter), A > 0.
Pr{no events in [0,T]} = e

Mean number of events in [0, T] = AT

GPD for excess over threshold (intensity).



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Relation of parameters of GEV(u,0,£) to
parameters of point process (A,0".&).

e Shape parameter, &, identical.
o log \ = —%bg (14 ¢&44)
o 0" =0+ &u—p

More detail: Time scaling constant, h. For example, for annual max-
imum of daily data, h ~ 1/365.25. Change of time scale, h, for
GEV(u,0,£) to b/

/= () and wﬁ;{(ﬂ [1 (QH}



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Two ways to estimate PP parameters

e Orthogonal approach (estimate frequency and intensity separately).

Convenilent to estimate.

Difficult to interpret in presence of covariates.
e GEV re-parameterization (estimate both simultaneously).

More difficult to estimate.

Interpretable even with covariates.



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Daily (negative) minimum temperature (°F) July—August 1948-1990
at Phoenix Sky Harbor Airport (Tphap

Analyze daily data instead of just annual maxima
(ignoring annual cycle for now).

Orthogonal Approach

“ No. X; > —73
A = 62 days per year - i ~ 0.1 per year
No. Xz

6~ 3.93, & & —0.25

Demo: Estimate using GUI windows (Transform to indicator above
threshold, then fit Poisson).



Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Fort Collins, Colorado daily precipitation

Analyze daily data instead of just annual maxima
(ignoring annual cycle for now).

Point Process

i =~ —63.68 (i.e., 63.68)
& =1.62
£~ —0.25



Risk Communication Under Stationarity

Unchanging climate

Return level, z,, is the value associated with the return period,
1/p. That is, z, is the level expected to be exceeded on average
once every 1/p years.

That is, Return level, z,, with 1/p-year return period is
5 =F"(1-p)
For example, p = 0.01 corresponds to the 100-year return period.

Easy to obtain from GEV and GP distributions (stationary case).



Risk Communication Under Stationarity

Unchanging climate

For example, GEV return level is given by

GEV pdf

0.3

0.2

0.1

0.0

o)
Zp:/l—g

Return level with (1/p)-year return period

[1— (= log(1—p))] "¢

Similar for GPD, but must take A
into account.



Non-Stationarity

Sources

e Trends:
climate change: trends in frequency and intensity of extreme weather
events.

e Cycles:
Annual and/or diurnal cycles often present in meteorological
variables.

e Other.



Non-Stationarity

Theory

No general theory for non-stationary case.
Only limited results under restrictive conditions.

Can introduce covariates in the distribution parameters.



Non-Stationarity

Phoenix minimum temperature

Phoenix summer minimum temperature
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Year



Non-Stationarity

Phoenix minimum temperature

Recall: min{Xy,..., X} = —max{—Xq,..., =X, }.

Assume summer minimum temperature in yeart = 1,2, ... has GEV
distribution with:

pu(t) = po + puy - t

logo(t) =09+ 01t

§(t) = ¢



Non-Stationarity

Phoenix minimum temperature
Note: To convert back to min{ Xy, ..., X,},

change sign of location parameters. But note that model is

Pr{-X <z} =Pr{X > -2} =1—- F(—x).

[(t) =~ 66.170 + 0.196t
log 6(t) =~ 1.338 — 0.000¢

£~ —0.21
Likelihood ratio test

for 1 = 0 (p-value < 107°),
for o1 = 0 (p-value =~ 0.366).



Non-Stationarity

Phoenix minimum temperature
Model Checking. Found the best model from a range of models,
but is it a good representation of the data? Transform data to a

common distribution, and check the qq-plot.

1. Non-stationary GEV to exponential

. —1/E(1)
L€ )+

2. Non-stationary GEV to Gumbel (used by ismev/extRemes)

a0 (g

Et —



Non-Stationarity

Phoenix minimum temperature

Model Checking. Found the best model from a range of models,

but is it a good representation of the data? Transform data to a
common distribution, and check the qg-plot.

Q—-Q Plot (Gumbel Scale): Phoenix Min Temp

Empirical




Non-Stationarity

Physically based covariates
Winter maximum daily temperature at Port Jervis, New York

Let X4, ..., X, bethe winter maximum temperatures, and 21, ..., Z,
the associated Arctic Oscillation (AO) winter index. Given Z = z,
assume conditional distribution of winter maximum temperature is
GEV with parameters

pu(2) = po + 1 - 2

logo(z) =09+ 012

§(z) =€



Non-Stationarity

Physically based covariates
Winter maximum daily temperature at Port Jervis, New York

f(z) = 1526 + 1.175 - 2
log(z) =0.984 —0.044 - 2

£(z) = —0.186

Likelihood ratio test for p; = 0 (p-value < 0.001)
Likelihood ratio test for o3 = 0 (p-value & 0.635)



Non-Stationarity

Cyeclic variation

Fort Collins, Colorado precipitation

Precipitation (in)
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0.00

Fort Collins daily precipitation
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Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation Orthogonal approach. First fit
annual cycle to Poisson rate parameter (T = 365.25):

. 2wt 27t
log A(t) = Ao + g sin (T) + A9 cos (7)

Giving

: ot ot
log A(t) ~ —3.72 + 0.22sin (%) — 0.85 cos (%)

Likelihood ratio test for Ay = Ay = 0 (p-value = 0).



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation Orthogonal approach. Next fit
GPD with annual cycle in scale parameter.

0go”(t) = og +oysin | — 03 €08 | —
Giving
ot Ot
log & (t) &~ —1.24 + 0.09sin (%) —0.30 cos (%)

Likelihood ratio test for of = g%y = 0 (p-value < 10_5)



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation

Annual cycle in location and scale parameters of the
GEV re-parameterization approach point process model with
t=1,2,...,and T" = 365.25.

p(t) = po + psin (2“) + [49 COS (2;3’5)

log o(t) = 09 + o sin () + 02 cos ()

§(t) = ¢



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation

fi(t) ~ 1.281 — 0.085sin (Z) — 0.806 cos ()

log 6(t) ~ —0.847 — 0.123sin () — 0.602 cos ()

AN

&~ 0.182

Likelihood ratio test for p; = puy = 0 (p-value = 0).
Likelihood ratio test for o1 = g9 = 0 (p-value ~ 0).



Non-Stationarity

Cyeclic variation
Fort Collins, Colorado precipitation

Residual quantile Plot (Exptl. Scale)

empirical




Risk Communication (Under Non-Stationarity)

Return period/level does not make sense anymore because of chan-
ging distribution (e.g., with time). Often, one uses an “effective"
return period/level instead. That is, compute several return levels for
varying probabilities over time. Can also determine a single return
period/level assuming temporal independence.

1 n
1 — = Pr{max(Xy,..., X,) <z} = Epz',

where
i = 1—%%_1/& ,for y; > 0,
' 1 , otherwise

where y; = 1 + %(Zm — 1), and (p;, 04, &;) are the parametrs of the
point process model for observation 2. Can be easily solved for z,,
(using numerical methods). Difficulty is in calculating the uncertainty
(See Coles, 2001, chapter 7).



Heat Waves/Hot Spells

Long stretches of high (but not necessarily extreme) temperatures
without relief can have devastating impacts.

e VA may not be needed here.
e Point process approach may be usetul.
Short stretches of high temperatures accompanied with an extremely
hot day can also have devastating impacts.
e EVA may be useful here (particularly point process approach).

e Need more information than just a block extreme or threshold
excess.

References of papers using EVA to analyze weather spells can be found
at Rick Katz" Extremes web page:
http: //www.isse.ucar.edu/extremevalues/biblio.html#/spells



Heat Waves/Hot Spells

Definition of Hot Spell
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Image from: Katz, R.W., E.M. Furrer, and M.D. Walter, 2009:
Statistical modeling of hot spells and heat waves. International
Conference on Extreme Value Analysis, Fort Collins, CO.



The R programming language

R Development Core Team (2008). R: A language and environment
for statistical computing. R Foundation for Statistical Computing,

Vienna, Austria. ISBN 3-900051-07-0,
http://www.r-project.org

Vance A, 2009. Data analysts captivated by R’s power. New York

Times, 6 January 2009. Available at:
http://www.nytimes.com/2009/01/07/technology/
business-computing/07program.html?_r=2



R preliminaries

Assuming R is installed on your computer...

[n linux, unix, and Mac (terminal/xterm) the directory in which R
is opened is (by default) the current working directory. In Windows
(Mac GUI?), the working directory is usually in one spot, but can be
changed (tricky).

Open an R workspace:
Type R at the command prompt (linux/unix, Mac terminal /xterm)
or double click on R’s icon (Windows, Mac GUI).

getwd () # Find out which directory is the current working directory.



R preliminaries

Assigning vectors and matrices to objects:

#
#
X

I+

i

Assign a vector contalining the numbers -1, 4

and 0 to an object called ’x’
<- c( -1, 4, 0)

Assign a 3 X2 matrix with column vectors:
3, 7, 9 to an object called ’y’.
<- cbind( c(C 2, 1, 5), c(3, 7, 9))

Write ’x’ and ’y’ out to the screen.

2,

1, 5 and



R preliminaries

Saving a workspace and exiting

# To save a workspace without exiting R.
save.image ()

# To exit R while also saving the workspace.
q(llyesll)

# Exit R without saving the workspace.
q(”IlO”

# Or, interactively...

qO)



R preliminaries

Subsetting vectors:

# Look at only the 3-rd element of ’x’.
x [3]

# Look at the first two elements of ’x’.
x[1:2]

# The first and third.
x[c(1,3)]

# Everything but the second element.
x [-2]



R preliminaries

Subsetting matrices:

# Look at the first row of ’y’.
y[1,]

# Assign the first column of ’y’ to a vector called ’yl1’.
# Similarly for the 2nd column.

y1 <- y[,1]

y2 <- y[,2]

# Assign a "missing value" to the second row, first column
# element of ’y’.
y[2,1] <- NA



R preliminaries

Logicals and Missing Values:

# Do ’x’ and/or ’y’ have any missing values?
any( is.na( x))
any( is.na( y))

# Replace any missing values 1in ’y’ with -999.0.
y[ is.na( y)] <- -999.0

# Which elements of ’x’ are equal to 07
X::



R preliminaries

Contributed packages

# Install some useful packages. Need only do once.

install.packages( c("fields", # A spatial stats package.
"evd", # An EVA package.
"evdbayes", # Bayesian EVA package.
"ismev", # Another EVA package.
"maps", # For adding maps to plots.

"SpatialExtremes"))

# Now load them into R. Must do for each new session.
library( fields)

library( evd)

library( evdbayes)

library( ismev)

library( SpatialExtremes)
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See hierarchy of loaded packages:
search()

# Detach the ’SpatialExtremes’ package.
detach(pos=2)

See how to reference a contributed package:

citation("fields")
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Help files

Getting help from a package or a function
help( ismev)
Alternatively, can use ?. For example,
7extRemes

For functions,

7gev.fit

Example data sets:

?HEAT
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Basics of plotting in R:

e [irst must open a device on which to plot.

— Most plotting commands (e.g., plot) open a device (that you
can see) if one is not already open. If a device is open, it will
write over the current plot.

— X11() will also open a device that you can see.

— To create a file with the plot(s), use postscript, jpeg, png,
or pdf (before calling the plotting routines. Use dev.off () to
close the device and create the file.

e plot and many other plotting functions use the par values to
define various characteristics (e.g., margins, plotting symbols, char-
acter sizes, etc.). Type help( plot) and help( par) for more
information.
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Simple plot example.

plot( 1:10, z <- rnorm(10), type="1", xlab="", ylab="z",
main="Std Normal Random Sample")

points( 1:10, z, col="red", pch="s", cex=2)

lines( 1:10, rnorm(10), col="blue", 1lwd=2, 1ty=2)

# Make a standard normal qqg-plot of ’z’.
qqnorm( z)

# Shut off the device.
dev.off ()
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