# Extreme Value Theory, Extreme Temperatures, and demonstration of extRemes



Eric Gilleland,
National Center for
Atmospheric Research,
Boulder, Colorado, U.S.A.
http://www.ral.ucar.edu/staff/ericg

Third Biannual NCAR Workshop on Climate and Health Effects of Heat Waves and Air Pollution 15 July 2009

# Extremes Toolkit (extRemes) Web Page

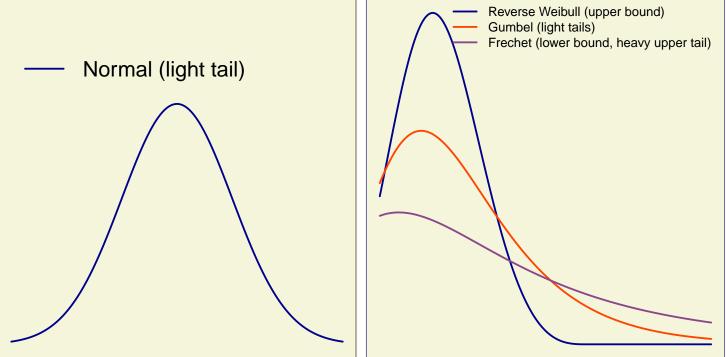
http://www.isse.ucar.edu/extremevalues/evtk.html



#### Motivation

Central Limit Theorem

Extremal Types Theorem

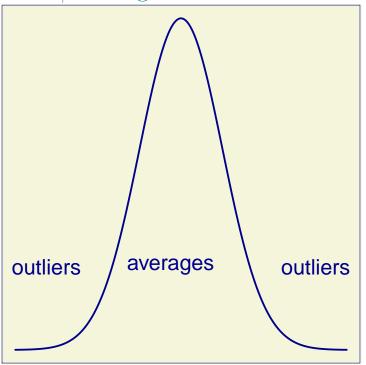


Sums/Averages

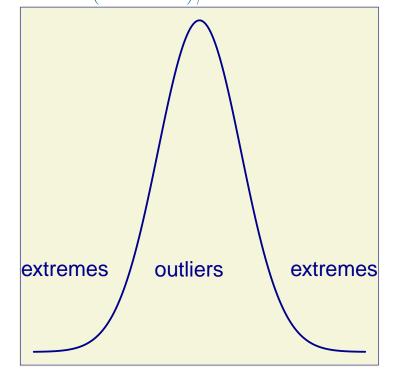
Maxima/Minima (threshold excesses)

#### Motivation

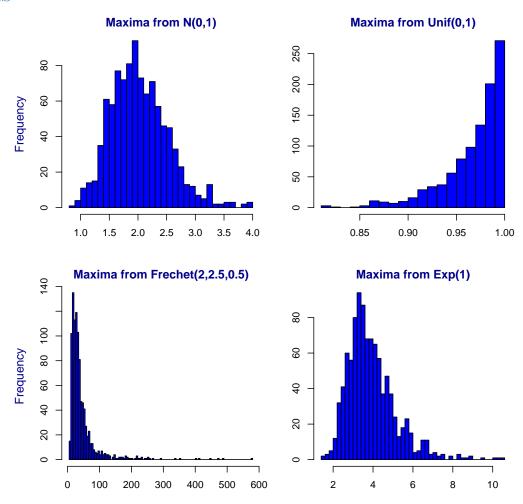
Sums/Averages



Maxima (Minima)/Threshold Excesses



#### Simulations



### Extremal Types Theorem

Let  $X_1, \ldots, X_n$  be a sequence of independent and identically distributed (iid) random variables with common distribution function, F. Want to know the distribution of

$$M_n = \max\{X_1, \dots, X_n\}.$$

Example:  $X_1, \ldots, X_n$  could represent hourly precipitation, daily ozone concentrations, daily average temperature, etc. Interest for now is in maxima of these variables over particular blocks of time.

### Extremal Types Theorem

If interest is in the minimum over blocks of data (e.g., monthly minimum temperature), then note that

$$\min\{X_1,\ldots,X_n\} = -\max\{-X_1,\ldots,-X_n\}$$

Therefore, we can focus on the maxima.

### Extremal Types Theorem

Could try to derive the distribution for  $M_n$  exactly for all n as follows.

$$\Pr\{M_n \le z\} = \Pr\{X_1 \le z, \dots, X_n \le z\}$$

$$\stackrel{\text{indep.}}{=} \Pr\{X_1 \le z\} \times \dots \times \Pr\{X_n \le z\}$$

$$\stackrel{\text{ident.}}{=} \text{dist.} \{F(z)\}^n.$$

### Extremal Types Theorem

Could try to derive the distribution for  $M_n$  exactly for all n as follows.

$$\Pr\{M_n \le z\} = \Pr\{X_1 \le z, \dots, X_n \le z\}$$

$$\stackrel{\text{indep.}}{=} \Pr\{X_1 \le z\} \times \dots \times \Pr\{X_n \le z\}$$

$$\stackrel{\text{ident.}}{=} \text{dist.} \{F(z)\}^n.$$

But! If F is not known, this is not very helpful because small discrepancies in the estimate of F can lead to large discrepancies for  $F^n$ .

### Extremal Types Theorem

Could try to derive the distribution for  $M_n$  exactly for all n as follows.

$$\Pr\{M_n \le z\} = \Pr\{X_1 \le z, \dots, X_n \le z\}$$

$$\stackrel{\text{indep.}}{=} \Pr\{X_1 \le z\} \times \dots \times \Pr\{X_n \le z\}$$

$$\stackrel{\text{ident.}}{=} \text{dist.} \{F(z)\}^n.$$

But! If F is not known, this is not very helpful because small discrepancies in the estimate of F can lead to large discrepancies for  $F^n$ .

Need another strategy!

### Extremal Types Theorem

If there exist sequences of constants  $\{a_n > 0\}$  and  $\{b_n\}$  such that

$$\Pr\left\{\frac{M_n - b_n}{a_n} \le z\right\} \longrightarrow G(z) \text{ as } n \longrightarrow \infty,$$

where G is a non-degenerate distribution function, then G belongs to one of the following three types.

### Extremal Types Theorem

I. Gumbel

$$G(z) = \exp\left\{-\exp\left[-\left(\frac{z-b}{a}\right)\right]\right\}, -\infty < z < \infty$$

II. Fréchet

$$G(z) = \begin{cases} 0, & z \le b, \\ \exp\left\{-\left(\frac{z-b}{a}\right)^{-\alpha}\right\}, & z > b; \end{cases}$$

III. Weibull

$$G(z) = \left\{ \begin{array}{l} \exp\left\{-\left[-\left(\frac{z-b}{a}\right)^{\alpha}\right]\right\}, \ z < b, \\ 1, \qquad z \ge b \end{array} \right.$$

with parameters a, b and  $\alpha > 0$ .

### Extremal Types Theorem

The three types can be written as a single family of distributions, known as the generalized extreme value (GEV) distribution.

$$G(z) = \exp\left\{-\left[1 + \xi\left(\frac{z - \mu}{\sigma}\right)\right]_{+}^{-1/\xi}\right\},$$

where  $y_{+} = \max\{y, 0\}, -\infty < \mu, \xi < \infty \text{ and } \sigma > 0.$ 

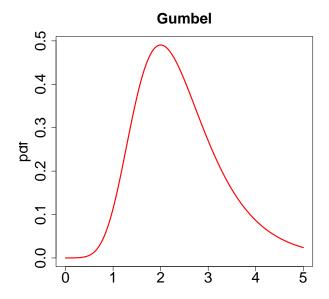
#### GEV distribution

Three parameters: location  $(\mu)$ , scale  $(\sigma)$  and shape  $(\xi)$ .

- 1.  $\xi = 0$  (Gumbel type, limit as  $\xi \longrightarrow 0$ )
- 2.  $\xi > 0$  (Fréchet type)
- 3.  $\xi < 0$  (Weibull type)

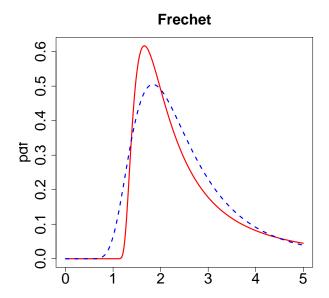
#### Gumbel type

- Light tail
- Domain of attraction for many common distributions (e.g., normal, lognormal, exponential, gamma)



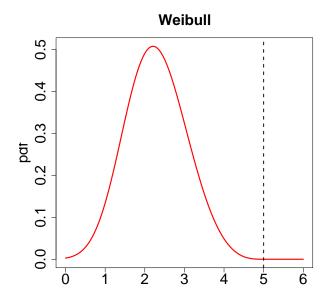
#### Fréchet type

- Heavy tail
- $\mathcal{E}[X^r] = \infty$  for  $r \geq 1/\xi$  (i.e., infinite variance if  $\xi \geq 1/2$ )
- Of interest for precipitation, streamflow, economic impacts



#### Weibull type

- Bounded upper tail at  $\mu \frac{\sigma}{\xi}$
- Of interest for temperature, wind speed, sea level

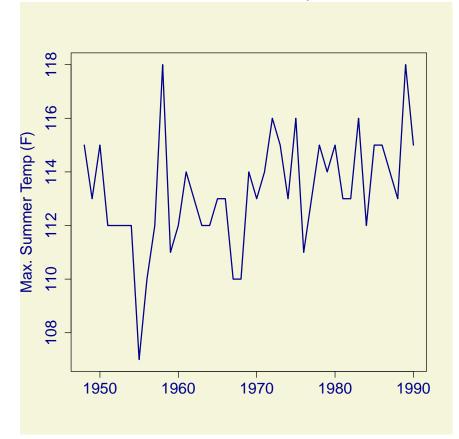


#### Normal vs. GEV

| $\Pr\{X > \cdot\}$   | 1    | 2    | 4           | 8            | 16           | 32            |
|----------------------|------|------|-------------|--------------|--------------|---------------|
| N(0,1)               | 0.16 | 0.02 | $< 10^{-4}$ | $< 10^{-15}$ | $< 10^{-50}$ | $< 10^{-200}$ |
| Gumbel(0,1)          | 0.31 | 0.13 | 0.02        | $< 10^{-3}$  | $< 10^{-6}$  | $< 10^{-13}$  |
| Fréchet $(0,1,0.5)$  | 0.36 | 0.22 | 0.11        | 0.04         | 0.01         | 0.003         |
| Weibull $(0,1,-0.5)$ | 0.22 | 0    | 0           | 0            | 0            | 0             |

### Example

Phoenix Sky Harbor airport summer (July–August) 1948–1990 maximum (and minimum) temperature (°F)



Source: U.S. National Weather Service Forecast office at the Phoenix Sky Harbor Airport (via extRemes).

Demo: Reading in the HEAT data to extRemes

Demo:

ls, class, names, colnames, dim, ...

Demo: Scatter (line) plot using extRemes

Demo: take the negative of the minimum temperatures.

### Example

### Fort Collins, Colorado precipitation

What sort of extreme temperatures can we expect in Phoenix?

- Assume no long-term trend emerges (for now).
- Using annual maxima removes effects of annual trend in analysis.
- Annual Maxima/(negative) Minima fit to GEV.

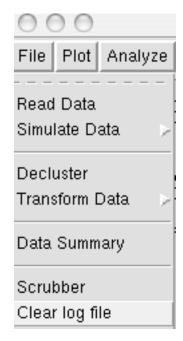
Demo: Fitting a (stationary) GEV to maxima and (negative) minima.

#### Command-line Code Executed

To see the (underlying) code used to execute this fit, look at the extRemes.log file found in your working R directory (use getwd() to find this directory).

Should periodically clear this file because it will get larger as more

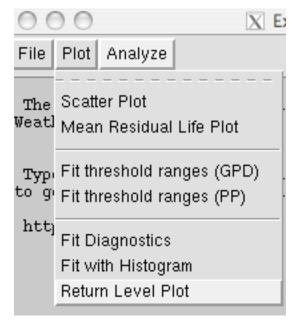
commands are executed.



Demo: Estimate 95% CI's for shape parameter using profile likelihood.

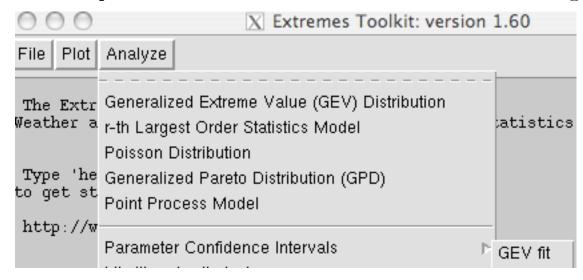


Demo: Return Levels



#### Return Levels

Demo: profile likelihood to determine CI's for longer return periods.



Let  $X_1, X_2, \ldots$  be an iid sequence of random variables, again with marginal distribution, F. Interest is now in the conditional probability of X's exceeding a certain value, given that X already exceeds a sufficiently large threshold, u.

$$\Pr\{X > u + y | X > u\} = \frac{1 - F(u + y)}{1 - F(u)}, y > 0$$

Once again, if we know F, then the above probability can be computed. Generally not the case in practice, so we turn to a broadly applicable approximation.

If  $\Pr{\max{X_1,\ldots,X_n}} \le z \ge G(z)$ , where

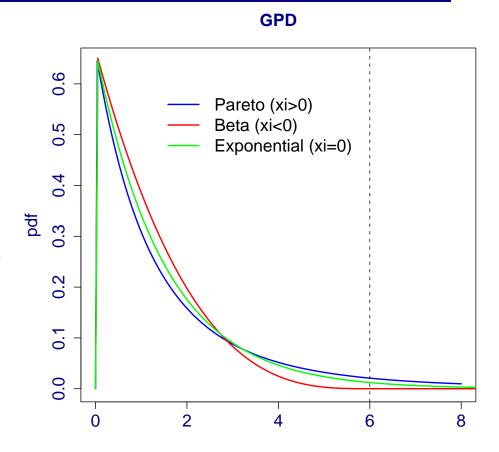
$$G(z) = \exp\left\{-\left[1 + \xi\left(\frac{z - \mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

for some  $\mu, \xi$  and  $\sigma > 0$ , then for sufficiently large u, the distribution [X - u|X > u], is approximately the generalized Pareto distribution (GPD). Namely,

$$H(y) = 1 - \left(1 + \frac{\xi y}{\tilde{\sigma}}\right)_{+}^{-1/\xi}, y > 0,$$

with  $\tilde{\sigma} = \sigma + \xi(u - \mu)$  ( $\sigma$ ,  $\xi$  and  $\mu$  as in G(z) above).

- Pareto type  $(\xi > 0)$ heavy tail
- Beta type  $(\xi < 0)$ bounded above at  $u - \sigma/\xi$
- Exponential type  $(\xi = 0)$  light tail

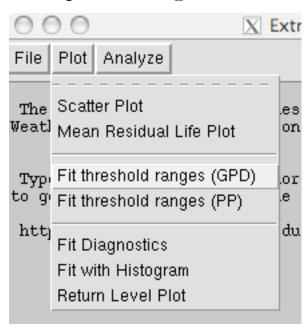


### Choosing a threshold

### Variance/bias trade-off

Low threshold allows for more data (low variance).

Theoretical justification for GPD requires a high threshold (low bias).



Choosing a threshold

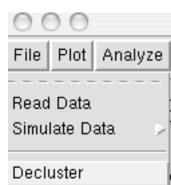
Demo: Choosing a threshold.

### Dependence above threshold

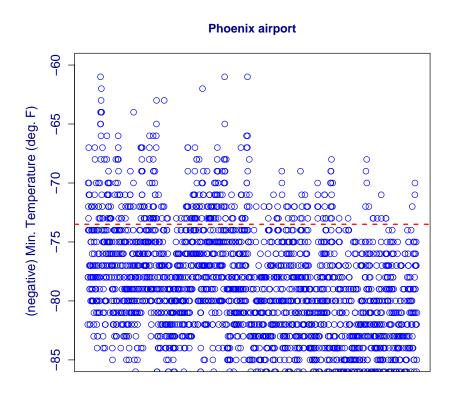
Often, threshold excesses are *not* independent. For example, a hot day is likely to be followed by another hot day.

Various procedures to handle dependence.

- Model the dependence.
- De-clustering (e.g., runs de-clustering).
- Resampling to estimate standard errors (avoid tossing out information about extremes).



### Dependence above threshold



Phoenix (airport) minimum temperature (°F).

July and August 1948–1990.

Urban heat island (warming trend as cities grow).

Model lower tail as upper tail after negation.

### Dependence above threshold

Fit without de-clustering.

$$\hat{\sigma} \approx 3.93$$
 $\hat{\xi} \approx -0.25$ 

With runs de-clustering (r=1).

$$\hat{\sigma} \approx 4.21$$

$$\hat{\xi} \approx -0.25$$

Point Process: frequency and intensity of threshold excesses

Event is a threshold excess (i.e., X > u).

Frequency of occurrence of an event (rate parameter),  $\lambda > 0$ .

 $\Pr\{\text{no events in } [0,T]\} = e^{-\lambda T}$ 

Mean number of events in  $[0, T] = \lambda T$ .

GPD for excess over threshold (intensity).

Point Process: frequency and intensity of threshold excesses Relation of parameters of  $\text{GEV}(\mu, \sigma, \xi)$  to parameters of point process  $(\lambda, \sigma^*, \xi)$ .

- Shape parameter,  $\xi$ , identical.
- $\log \lambda = -\frac{1}{\xi} \log \left( 1 + \xi \frac{u \mu}{\sigma} \right)$
- $\bullet \ \sigma^* = \sigma + \xi(u \mu)$

More detail: Time scaling constant, h. For example, for annual maximum of daily data,  $h \approx 1/365.25$ . Change of time scale, h, for  $\text{GEV}(\mu, \sigma, \xi)$  to h'

$$\sigma' = \sigma \left(\frac{h}{h'}\right)^{\xi} \text{ and } \mu' = \mu + \frac{1}{\xi} \left\{ \sigma' \left[ 1 - \left(\frac{h}{h'}\right)^{-\xi} \right] \right\}$$

Point Process: frequency and intensity of threshold excesses
Two ways to estimate PP parameters

• Orthogonal approach (estimate frequency and intensity separately).

Convenient to estimate.

Difficult to interpret in presence of covariates.

• GEV re-parameterization (estimate both simultaneously).

More difficult to estimate.

Interpretable even with covariates.

Point Process: frequency and intensity of threshold excesses Daily (negative) minimum temperature (°F) July–August 1948–1990 at Phoenix Sky Harbor Airport (Tphap

Analyze daily data instead of just annual maxima (ignoring annual cycle for now).

# Orthogonal Approach

$$\hat{\lambda} = 62 \text{ days per year} \cdot \frac{\text{No. } X_i > -73}{\text{No. } X_i} \approx 6.1 \text{ per year}$$

$$\hat{\sigma}^* \approx 3.93, \, \hat{\xi} \approx -0.25$$

Demo: Estimate using GUI windows (Transform to indicator above threshold, then fit Poisson).

Point Process: frequency and intensity of threshold excesses Fort Collins, Colorado daily precipitation

Analyze daily data instead of just annual maxima (ignoring annual cycle for now).

#### Point Process

$$\hat{\mu} \approx -63.68 \text{ (i.e., 63.68)}$$

$$\hat{\sigma} = 1.62$$

$$\hat{\xi} \approx -0.25$$

# Risk Communication Under Stationarity

#### Unchanging climate

Return level,  $z_p$ , is the value associated with the return period, 1/p. That is,  $z_p$  is the level expected to be exceeded on average once every 1/p years.

That is, Return level,  $z_p$ , with 1/p-year return period is

$$z_p = F^{-1}(1 - p).$$

For example, p = 0.01 corresponds to the 100-year return period.

Easy to obtain from GEV and GP distributions (stationary case).

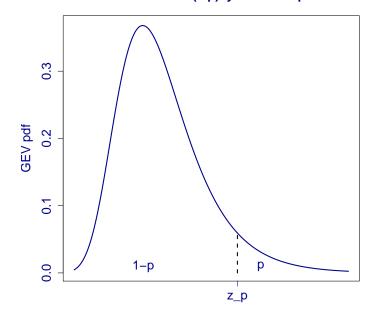
## Risk Communication Under Stationarity

#### Unchanging climate

For example, GEV return level is given by

$$z_p = \mu - \frac{\sigma}{\xi} [1 - (-\log(1-p))]^{-\xi}$$

#### Return level with (1/p)-year return period



Similar for GPD, but must take  $\lambda$  into account.

#### Sources

- Trends: climate change: trends in frequency and intensity of extreme weather events.
- Cycles:
  Annual and/or diurnal cycles often present in meteorological variables.
- Other.

#### Theory

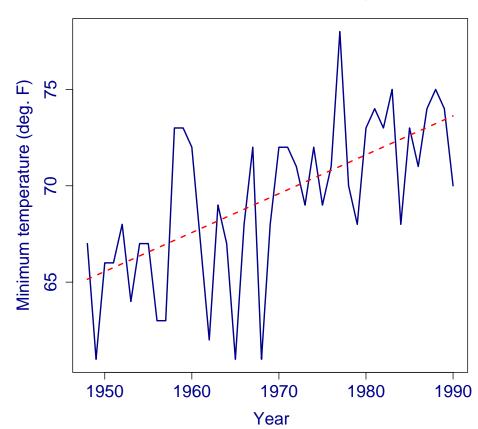
No general theory for non-stationary case.

Only limited results under restrictive conditions.

Can introduce covariates in the distribution parameters.

# Phoenix minimum temperature

#### Phoenix summer minimum temperature



# Phoenix minimum temperature

Recall:  $\min\{X_1, ..., X_n\} = -\max\{-X_1, ..., -X_n\}.$ 

Assume summer minimum temperature in year t = 1, 2, ... has GEV distribution with:

$$\mu(t) = \mu_0 + \mu_1 \cdot t$$

$$\log \sigma(t) = \sigma_0 + \sigma_1 \cdot t$$

$$\xi(t) = \xi$$

# Phoenix minimum temperature

Note: To convert back to  $\min\{X_1, \ldots, X_n\}$ , change sign of location parameters. But note that model is  $\Pr\{-X \leq x\} = \Pr\{X \geq -x\} = 1 - F(-x)$ .

$$\hat{\mu}(t) \approx 66.170 + 0.196t$$

$$\log \hat{\sigma}(t) \approx 1.338 - 0.009t$$

$$\hat{\xi} \approx -0.21$$

Likelihood ratio test

for 
$$\mu_1 = 0$$
 (p-value  $< 10^{-5}$ ),  
for  $\sigma_1 = 0$  (p-value  $\approx 0.366$ ).

# Phoenix minimum temperature

**Model Checking**. Found the best model from a range of models, but is it a good representation of the data? Transform data to a common distribution, and check the qq-plot.

1. Non-stationary GEV to exponential

$$\varepsilon_t = \left\{ 1 + \frac{\hat{\xi}(t)}{\hat{\sigma}(t)} [X_t - \hat{\mu}(t)] \right\}^{-1/\xi(t)}$$

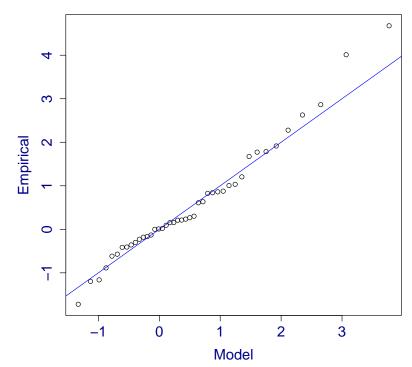
2. Non-stationary GEV to Gumbel (used by ismev/extRemes)

$$\varepsilon_t = \frac{1}{\hat{\xi}(t)} \log \left\{ 1 + \hat{\xi}(t) \left( \frac{X_t - \hat{\mu}(t)}{\hat{\sigma}(t)} \right) \right\}$$

# Phoenix minimum temperature

**Model Checking**. Found the best model from a range of models, but is it a good representation of the data? Transform data to a common distribution, and check the qq-plot.

#### Q-Q Plot (Gumbel Scale): Phoenix Min Temp



## Physically based covariates

Winter maximum daily temperature at Port Jervis, New York

Let  $X_1, \ldots, X_n$  be the winter maximum temperatures, and  $Z_1, \ldots, Z_n$  the associated Arctic Oscillation (AO) winter index. Given Z = z, assume conditional distribution of winter maximum temperature is GEV with parameters

$$\mu(z) = \mu_0 + \mu_1 \cdot z$$
$$\log \sigma(z) = \sigma_0 + \sigma_1 \cdot z$$
$$\xi(z) = \xi$$

## Physically based covariates

Winter maximum daily temperature at Port Jervis, New York

$$\hat{\mu}(z) \approx 15.26 + 1.175 \cdot z$$

$$\log \hat{\sigma}(z) = 0.984 - 0.044 \cdot z$$

$$\xi(z) = -0.186$$

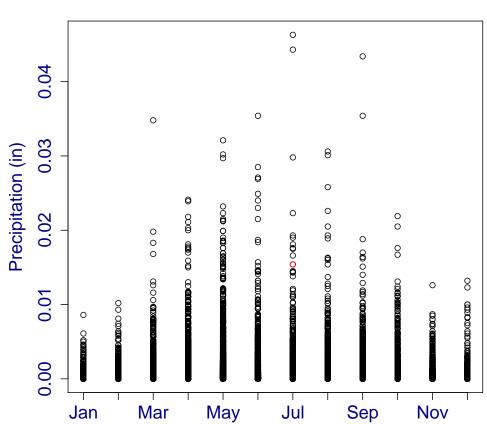
Likelihood ratio test for  $\mu_1 = 0$  (p-value < 0.001)

Likelihood ratio test for  $\sigma_1 = 0$  (p-value  $\approx 0.635$ )

# Cyclic variation

Fort Collins, Colorado precipitation

#### Fort Collins daily precipitation



# Cyclic variation

Fort Collins, Colorado precipitation Orthogonal approach. First fit annual cycle to Poisson rate parameter (T=365.25):

$$\log \lambda(t) = \lambda_0 + \lambda_1 \sin \left(\frac{2\pi t}{T}\right) + \lambda_2 \cos \left(\frac{2\pi t}{T}\right)$$

Giving

$$\log \hat{\lambda}(t) \approx -3.72 + 0.22 \sin \left(\frac{2\pi t}{T}\right) - 0.85 \cos \left(\frac{2\pi t}{T}\right)$$

Likelihood ratio test for  $\lambda_1 = \lambda_2 = 0$  (p-value  $\approx 0$ ).

# Cyclic variation

Fort Collins, Colorado precipitation Orthogonal approach. Next fit GPD with annual cycle in scale parameter.

$$\log \sigma^*(t) = \sigma_0^* + \sigma_1^* \sin\left(\frac{2\pi t}{T}\right) + \sigma_2^* \cos\left(\frac{2\pi t}{T}\right)$$

Giving

$$\log \hat{\sigma}^*(t) \approx -1.24 + 0.09 \sin \left(\frac{2\pi t}{T}\right) - 0.30 \cos \left(\frac{2\pi t}{T}\right)$$

Likelihood ratio test for  $\sigma_1^* = \sigma_2^* = 0$  (p-value  $< 10^{-5}$ )

# Cyclic variation

Fort Collins, Colorado precipitation

Annual cycle in location and scale parameters of the GEV re-parameterization approach point process model with t = 1, 2, ..., and T = 365.25.

$$\mu(t) = \mu_0 + \mu_1 \sin\left(\frac{2\pi t}{T}\right) + \mu_2 \cos\left(\frac{2\pi t}{T}\right)$$
$$\log \sigma(t) = \sigma_0 + \sigma_1 \sin\left(\frac{2\pi t}{T}\right) + \sigma_2 \cos\left(\frac{2\pi t}{T}\right)$$
$$\xi(t) = \xi$$

# Cyclic variation

Fort Collins, Colorado precipitation

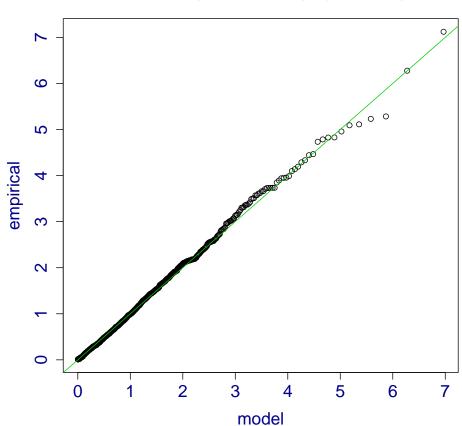
$$\hat{\mu}(t) \approx 1.281 - 0.085 \sin\left(\frac{2\pi t}{T}\right) - 0.806 \cos\left(\frac{2\pi t}{T}\right)$$
$$\log \hat{\sigma}(t) \approx -0.847 - 0.123 \sin\left(\frac{2\pi t}{T}\right) - 0.602 \cos\left(\frac{2\pi t}{T}\right)$$
$$\hat{\xi} \approx 0.182$$

Likelihood ratio test for  $\mu_1 = \mu_2 = 0$  (p-value  $\approx 0$ ). Likelihood ratio test for  $\sigma_1 = \sigma_2 = 0$  (p-value  $\approx 0$ ).

# Cyclic variation

Fort Collins, Colorado precipitation

#### Residual quantile Plot (Exptl. Scale)



# Risk Communication (Under Non-Stationarity)

Return period/level does not make sense anymore because of changing distribution (e.g., with time). Often, one uses an "effective" return period/level instead. That is, compute several return levels for varying probabilities over time. Can also determine a single return period/level assuming temporal independence.

$$1 - \frac{1}{m} = \Pr \left\{ \max(X_1, \dots, X_n) \le z_m \right\} \approx \prod_{i=1}^n p_i,$$

where

$$p_i = \begin{cases} 1 - \frac{1}{n} y_i^{-1/\xi_i} & \text{for } y_i > 0, \\ 1 & \text{otherwise} \end{cases}$$

where  $y_i = 1 + \frac{\xi_i}{\sigma_i}(z_m - \mu_i)$ , and  $(\mu_i, \sigma_i, \xi_i)$  are the parametrs of the point process model for observation i. Can be easily solved for  $z_m$  (using numerical methods). Difficulty is in calculating the uncertainty (See Coles, 2001, chapter 7).

# Heat Waves/Hot Spells

Long stretches of high (but not necessarily extreme) temperatures without relief can have devastating impacts.

- EVA may not be needed here.
- Point process approach may be useful.

Short stretches of high temperatures accompanied with an extremely hot day can also have devastating impacts.

- EVA may be useful here (particularly point process approach).
- Need more information than just a block extreme or threshold excess.

References of papers using EVA to analyze weather spells can be found at Rick Katz' *Extremes* web page:

http://www.isse.ucar.edu/extremevalues/biblio.html#spells

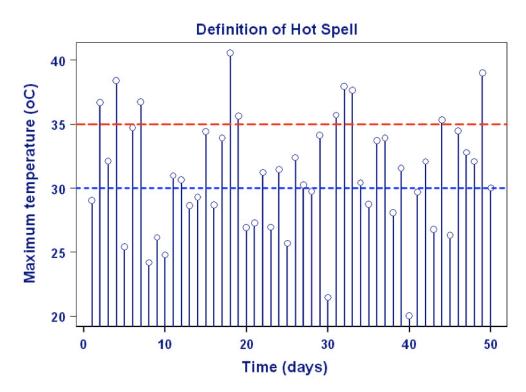


Image from: Katz, R.W., E.M. Furrer, and M.D. Walter, 2009: Statistical modeling of hot spells and heat waves. *International Conference on Extreme Value Analysis*, Fort Collins, CO.

# The R programming language

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.r-project.org

Vance A, 2009. Data analysts captivated by R's power. New York Times, 6 January 2009. Available at:

http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?\_r=2

Assuming R is installed on your computer...

In linux, unix, and Mac (terminal/xterm) the directory in which R is opened is (by default) the current working directory. In Windows (Mac GUI?), the working directory is usually in one spot, but can be changed (tricky).

#### Open an R workspace:

Type R at the command prompt (linux/unix, Mac terminal/xterm) or double click on R's icon (Windows, Mac GUI).

getwd() # Find out which directory is the current working directory.

#### Assigning vectors and matrices to objects:

```
# Assign a vector containing the numbers -1, 4
# and 0 to an object called 'x'
x < -c(-1, 4, 0)
# Assign a 3 \times 2 matrix with column vectors: 2, 1, 5 and
# 3, 7, 9 to an object called 'y'.
y \leftarrow cbind(c(2, 1, 5), c(3, 7, 9))
# Write 'x' and 'y' out to the screen.
Χ
У
```

#### Saving a workspace and exiting

```
# To save a workspace without exiting R.
save.image()
# To exit R while also saving the workspace.
q("yes")
# Exit R without saving the workspace.
q("no")
# Or, interactively...
q()
```

#### Subsetting vectors:

```
# Look at only the 3-rd element of 'x'.
x[3]
# Look at the first two elements of 'x'.
x[1:2]
# The first and third.
x[c(1,3)]
# Everything but the second element.
x[-2]
```

#### Subsetting matrices:

```
# Look at the first row of 'y'. y[1,]
# Assign the first column of 'y' to a vector called 'y1'. # Similarly for the 2nd column. y1 \leftarrow y[1,1]
y2 \leftarrow y[1,2]
```

# Assign a "missing value" to the second row, first column # element of 'y'.  $y[2,1] \leftarrow NA$ 

#### Logicals and Missing Values:

```
# Do 'x' and/or 'y' have any missing values?
any( is.na( x))
any( is.na( y))

# Replace any missing values in 'y' with -999.0.
y[ is.na( y)] <- -999.0

# Which elements of 'x' are equal to 0?
x == 0</pre>
```

#### Contributed packages

library( evdbayes)

library( SpatialExtremes)

library( ismev)

```
# Install some useful packages.
                               Need only do once.
install.packages(c("fields",
                                 # A spatial stats package.
                      "evd", # An EVA package.
                 "evdbayes", # Bayesian EVA package.
                    "ismev", # Another EVA package.
                    "maps", # For adding maps to plots.
               "SpatialExtremes"))
# Now load them into R. Must do for each new session.
library(fields)
library( evd)
```

See hierarchy of loaded packages:

```
search()

# Detach the 'SpatialExtremes' package.
detach(pos=2)

See how to reference a contributed package:
citation("fields")
```

#### Help files

Getting help from a package or a function help( ismev)

Alternatively, can use?. For example,

?extRemes

For functions,

?gev.fit

Example data sets:

?HEAT

#### Basics of plotting in R:

- First must open a device on which to plot.
  - Most plotting commands (e.g., plot) open a device (that you can see) if one is not already open. If a device is open, it will write over the current plot.
  - X11() will also open a device that you can see.
  - To create a file with the plot(s), use postscript, jpeg, png, or pdf (before calling the plotting routines. Use dev.off() to close the device and create the file.
- plot and many other plotting functions use the par values to define various characteristics (e.g., margins, plotting symbols, character sizes, etc.). Type help( plot) and help( par) for more information.

#### Simple plot example.

#### References

- Coles S, 2001. An introduction to statistical modeling of extreme values. Springer, London. 208 pp.
- Katz RW, MB Parlange, and P Naveau, 2002. Statistics of extremes in hydrology. Adv. Water Resources, 25:1287–1304.
- Stephenson A and E Gilleland, 2006. Software for the analysis of extreme events: The current state and future directions. *Extremes*, 8:87–109.