
Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Between residual tail–dependence and
Hüsler–Reiss triangular arrays

R.–D. Reiss
joint work with M. Frick

University of Siegen

National Center for Atmospheric Research,
Boulder, Colorado, July 11, 2008

1 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Overview

1. Tail Dependence Parameters

2. Maxima of Normal Random Vectors

3. Testing Tail Dependence Based on Radial Component

4. An Application to Wave and Surge Data

5. A Justification of the Statistical Model

6. New Research Directions

References

2 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Overview

1. Tail Dependence Parameters

2. Maxima of Normal Random Vectors

3. Testing Tail Dependence Based on Radial Component

4. An Application to Wave and Surge Data

5. A Justification of the Statistical Model

6. New Research Directions

References

3 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

The notion of tail dependence

We say that there is upper tail dependence in data (x , y) if x
and y are simultaneously large.

Discussion of bivariate normal samples
(ρ = 0, 0.7, 0.9,−0.7)
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A measure for tail dependence

Consider the conditional probability

P(Y > u|X > u) := P(X > u, Y > u)/P(X > u)

Tail dependence parameter:

χ = lim
u↑ω(F )

P(Y > u|X > u).

We have tail independence if χ = 0. In that case, we also
study rates of tail independence:

P(Y > u|X > u) ≃ (1 − u)β , u ↑ 1, β > 0, (1)

Reiss (1989), Ledford & Tawn (1996).

5 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Residual tail dependence parameter

We call the exponent β > 0 in (1) the residual tail
dependence parameter .

There is a relationship to the coefficient of tail dependence

χ̄ = lim
u↑1

2 log P{U > u}
log P{U > u, V > u}

− 1

introduced by Ledford & Tawn (1996) and Coles et al. (1999).
We have

β =
1 − χ̄

1 + χ̄
≥ 0.

Example: Consider a copula normal random vectors
(U, V ) = (Φ(X), Φ(Y )) with correlation coefficient ρ. We have

χ̄ = ρ .
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Asymptotic independence of maxima

Let (X , Y ) be standard bivariate normal with correlation
coefficient ρ, and (Xi , Yi ) independent copies of (X , Y ).

Then,

P
(

n
max
i=1

Xi ≤ x(n),
n

max
i=1

Yi ≤ y(n)

)

=

P
(

n
max
i=1

Xi ≤ x(n)

)

P
(

n
max
i=1

Yi ≤ y(n)

)

+ o(1) (2)

if, and only if,

χ = lim
u↑ω(F )

P(Y > u|X > u) = 0,

that is, tail independence holds (Geffroy (1958), Sibuya (1960),
Tiago de Oliveira (1962)).
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Rates for the asymptotic independence

We specify the remainder term in (2).

P
(

n
max
i=1

Xi ≤ x(n),
n

max
i=1

Yi ≤ y(n)

)

=

P
(

n
max
i=1

Xi ≤ x(n)

)

P
(

n
max
i=1

Yi ≤ y(n)

)

exp(nL(x(n), y(n)))

+ O(n−1) (3)

with the survivor function L(x , y) = P(X > x , Y > y). We have

nL(x(n), y(n)) ≃ n−β(log n)ρ/(1+ρ) (4)

Reiss (1989), Ledford & Tawn (1996)
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The Radial Component: a Statistical Model

We deal with random vectors (X , Y ) with values in the interval
[−1, 0] × [−1, 0] or, generally, in the negative quadrant.
Consider the sum

C = X + Y (5)

which we call radial component .

Later on we justify the following statistical model for the radial
component:

◮ Tail dependence:

P(X + Y > ct|X + Y > c) = t =: F0(t), t ∈ [0, 1],

◮ Residual tail dependence, β > 0:

P(X + Y > ct|X + Y > c) = t1+β =: Fβ(t), t ∈ [0, 1].
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Testing against a composite alternative

We are testing

H0 : tail dependence against H1 : residual tail dependence .

Our test statistic is based on the sample of radial components

ci = xi + yi , i = 1, . . . , m,

above a threshold c. According to the statistical modeling, we
are testing

H0 : F0(t) = t against H1 : Fβ(t) = t1+β , β > 0.

There is a uniformly most powerful test, namely, the
Neyman–Pearson test with critical regions of level α:

{

m
∑

i=1

log ci > H−1
m (1 − α)

}
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The data set

We apply the uniformly most powerful test to the wave and
surge data set which was analyzed by Ledford & Tawn (1996,
1997) and Coles et al. (1999).

The data set consists of 2, 894 three–hourly–measurements of
the surge and wave heights taken at Newlyn, a coastal town in
England.
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Transformation of the univariate margins

In a first step we transform the univariate margins by means of
the empirical dfs to the interval [0, 1] × [0, 1], cf. Coles et al.
(1999) and Ledford & Tawn (1997).

In a second step the data are shifted from [0, 1] × [0, 1] to
[−1, 0] × [−1, 0].
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Figure: Wave heights and surge levels at Newlyn: original data (left)
and transformed data set with [0, 1]–uniformly distributed margins
(right).
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Radial components exceeding a threshold

Fix c < 0 and consider those observations ci = xi + yi

exceeding the threshold c. The threshold c is chosen in such a
manner that the number m of exceedances is about 10% to
15% of the total sample size of 2, 894.
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Figure: The transformed full data set, shifted to the negative quadrant
(left) and data above the threshold lines corresponding to c = −0.46
and c = −0.35 (right).

16 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Resulting p–values of the test

p–values for different thresholds c: small p-values suggest
rejecting H0.

c m p–value

– 0.46 431 0.00028
– 0.45 414 0.00085
– 0.44 400 0.00158
– 0.43 390 0.00162
– 0.42 376 0.00305
– 0.41 361 0.00665
– 0.4 353 0.00542
– 0.39 338 0.01179
– 0.38 325 0.01939
– 0.37 313 0.02816
– 0.36 300 0.04601
– 0.35 294 0.03291

Table: p–values for different thresholds c.
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Interpretation

Specifying significance levels:
◮ significance level α = 0.01: for small thresholds c the

p-value is ≤ α which yields rejection of H0,
◮ significance level α = 0.05: for all chosen thresholds c the

p-value is ≤ α which yields rejection of H0,.

Therefore,
◮ there is a preference for rejecting tail dependence,
◮ there is indication of stronger residual tail dependence.

This agrees to the visual insight of the preceding scatterplot
(and to results by Coles et al. (1999) and Ledford & Tawn
(1996)).

18 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Overview

1. Tail Dependence Parameters

2. Maxima of Normal Random Vectors

3. Testing Tail Dependence Based on Radial Component

4. An Application to Wave and Surge Data

5. A Justification of the Statistical Model

6. New Research Directions

References

19 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Bivariate extreme value distributions (EVDs)

The statistical model for the radial component will be justified
within the framework of multivariate extreme value theory.

First we recall some basic facts. The df of the maxima of iid
random vectors (Xi , Yi) with common df F is given by

P
(

n
max
i=1

Xi ≤ x ,
n

max
i=1

Yi ≤ y
)

= F n(x , y).

The possible limiting dfs constitute the nonparametric family of
extreme value distributions (EVDs) G.
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The Pickands representation of EVDs

For EVDs G with univariate, exponential margins the Pickands
representation is valid:

G(x , y) = exp
(

(x + y)D
( x

x + y

))

, (x , y) ≤ 0,

where D is the Pickands dependence function .

For (X , Y ) with EVD df G and Pickands dependence
function D we have

◮ if D(t) = 1: independence of X , Y
◮ if D(t) = max(t, 1 − t): total dependence of X , Y .

Of importance are also the pertaining generalized Pareto
distributions (GPDs) which are given by

W = 1 + log G.
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A spectral decomposition

We decompose a bivariate df H, defined on
(−∞, 0) × (−∞, 0), into an array of certain univariate dfs by
using the angular and radial components

z = x/(x + y) and c = x + y .

Rewriting
H(x , y) = H(cz, c(1 − z)) =: Hz(c)

one gets a df in c for each fixed angle z (called spectral
decomposition of H). Consider the spectral densities

hz(c) =
∂

∂c
Hz(c).
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The basic condition

Remark: (i) If H = G, then hz(c) = D(z) + cD2(z) + 0(c).
(ii) If H = W , then hz(c) = D(z).

Condition 5.1. Assume that the univariate densities hz satisfy

hz(c) = D(z) + B(c)A(z) + o(B(c)), c ↑ 0,

for some regularly varying B with exponent β > 0.

Remark: (i) Roughly speaking, B(c) = |c|β) in Condition 5.1.
(ii) If D(z) is replaced by a(z) then a(z) = D(z).

23 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Limiting conditional distributions

Theorem 5.1. Under Condition 5.1:

(i) (Tail dependence) If D 6= 1, then

P(X + Y > ct|X + Y > c) −→ t =: F0(t), c ↑ 0.

(ii) (Residual tail dependence) If D = 1 and β > 0, then

P(X + Y > ct|X + Y > c) −→ t1+β =: Fβ(t), c ↑ 0.
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Limiting distributions of maxima under
varying parameters βn

Componentwise taken sample maxima of normal random
vectors can be asymptotically dependent if ρn → 1 for n → ∞,
Hüsler and Reiss (1989).

First step towards a general approach : For a bivariate df Hβn

satisfying Condition 5.1 with

βn → 0 as n → ∞, (6)

one can prove that

Hn
βn

(x/n, y/n) → exp
(

(x + y)(1 + λA
(

x
x + y

))

,

where λ depends on the speed of the convergence in (6).

26 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

Overview

1. Tail Dependence Parameters

2. Maxima of Normal Random Vectors

3. Testing Tail Dependence Based on Radial Component

4. An Application to Wave and Surge Data

5. A Justification of the Statistical Model

6. New Research Directions

References

27 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

References

Coles, S., Heffernan, J. and Tawn, J.A. (1999).
Dependence measures for extreme value analyses.
Extremes 2, 339-365.

Falk, M., Hüsler, J. and Reiss, R.-D. (2004). Laws of Small
Numbers: Extremes and Rare Events. Birkhäuser, Basel
(1st ed., DMV Seminar 23, 1994).

Falk, M. and Michel, R. (2006). Testing for tail
independence in extreme value models. Ann. Inst. Statist.
Math. 58, 261–290.

Falk, M. and Reiss, R.–D. (2005), On Pickands coordinates
in arbitrary dimensions, J. Mult. Analysis 92, 426–453.

Frick, M., Kaufmann, E. and Reiss, R.–D. (2007). Testing
the tail–dependence based on the radial component.
Extremes 10, 109–128.

28 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

References

Frick, M. and Reiss, R.–D. (2007). Expansions of
multivariate Pickands densities and testing the
tail–dependence. Submitted.

Haan, L. de (1985). Extremes in higher dimensions: the
model and some statistics. In Proc. 45th Session ISI, 26.3

Hashorva, E. (2005). Elliptical triangular arrays in the
max–domain of attraction of Hüsler–Reiss distribution.
Statist. Probab. Letters 72, 125–135.

Hüsler, J. and Reiss, R.–D. (1989). Maxima of normal
random vectors: between independence and complete
dependence. Stat. Probab. Lett. 7, 283–286.

Kaufmann, E. and Reiss, R.-D. (1995). Approximation
rates for multivariate exceedances. J. Statist. Plan. Inf. 45,
235–245.

29 / 30



Between residual tail
dependence and

Hüsler–Reiss
triangular arrays

1. Tail Dependence
Parameters

2. Maxima of Normal
Random Vectors

3. Testing Tail
Dependence Based on
Radial Component

4. An Application to
Wave and Surge Data

5. A Justification of the
Statistical Model

6. New Research
Directions

References

References

Ledford, A.W. and Tawn, J.A. (1996). Statistics for near
independence in multivariate extreme values. Biometrika
83, 169–187.

Ledford, A.W. and Tawn, J.A. (1997). Modelling
Dependence within Joint Tail Regions. J. R. Statist. Soc. B
59, 475–499.

Michel, R. (2006), Simulation and Estimation in
Multivariate Generalized Pareto Models, PhD thesis,
University of Wuerzburg.

Müller, A. (2006). Modellierung und Vergleich von
stochastischen Abhängigkeiten mit Copulas, Statistische
Woche, Dresden.

Reiss, R.-D. and Thomas, M. (2007). Statistical Analysis of
Extreme Values, 3rd ed., Birkhäuser, Basel (1st ed. 1997,
2nd ed. 2001).

30 / 30


	1. Tail Dependence Parameters
	2. Maxima of Normal Random Vectors
	3. Testing Tail Dependence Based on Radial Component
	4. An Application to Wave and Surge Data
	5. A Justification of the Statistical Model
	6. New Research Directions
	References

