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The R programming language

R Development Core Team (2008). R: A language and environment
for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. ISBN 3-900051-07-0,
http://www.r-project.org

Vance A, 2009. Data analysts captivated by R’s power. New York
Times, 6 January 2009. Available at:
http://www.nytimes.com/2009/01/07/technology/
business-computing/07program.html?_r=2
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Already familiar with R?

Advanced (potentially useful) topics:

• Reading and Writing NetCDF file formats:
http://www.image.ucar.edu/Software/Netcdf/

• A Climate Related Precipitation Example for Colorado:
http://www.image.ucar.edu/~nychka/FrontrangePrecip/
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Example

Fort Collins, Colorado daily precipitation amount
http://ccc.atmos.colostate.edu/~odie/rain.html

• Time series of daily precipitation amount (in), 1900–1999.

• Semi-arid region.

• Marked annual cycle in precipitation
(wettest in late spring/early summer, driest in winter).

• No obvious long-term trend.

• Recent flood, 28 July 1997.
(substantial damage to Colorado State University)

See, Katz et al. (2002), Adv. Water Res., 25:1287–1304 for more
on these data. Source: Colorado Climate Center, Colorado State
University (<URL: http://ulysses.atmos.colostate.edu>).
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Example

Fort Collins, Colorado precipitation
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Example

Fort Collins, Colorado precipitation
Annual Maxima
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Example

Fort Collins, Colorado precipitation
How often is such an extreme expected?

• Assuming no long-term trend emerges;

• Using annual maxima removes effects of seasonal trend in analysis.

require( extRemes)
data( ftcanmax)

# Fit GEV to Fort Collins annual maximum precipitation.
fit <- gev.fit( ftcanmax$Prec/100)

# Check the quality of the fit.
gev.diag( fit)
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Example

Fort Collins, Colorado precipitation

Fit looks good (from diagnostic plots).

Parameter Estimate (Std. Error)
Location (µ) 1.347 (0.617)
Scale (σ) 0.533 (0.488)
Shape (ξ) 0.174 (0.092)
Heavy tail!
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Example

Fort Collins, Colorado precipitation

# Is the shape parameter really not zero?
# Perform likelihood ratio test against Gumbel type.
fit0 < − gum.fit( ftcanmax$Prec/100)
Dev < − 2*(fit0$nllh - fit$nllh)
pchisq( Dev, 1, lower.tail=FALSE)

Likelihood ratio test for ξ = 0 rejects hypothesis of Gumbel type
(p-value ≈ 0.038).
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Example

Fort Collins, Colorado precipitation

95% Confidence intervals for ξ, using profile likelihood, are:
(0.009, 0.369).
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Use gev.profxi and locator(2)
to find CI’s.
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Example

Fort Collins, Colorado precipitation
Return Levels

fit.rl < − return.level( fit)

Return Estimated Return 95% CI
Period Level (in)
10 2.81 (2.41, 3.21)
100 5.10 ?(3.35, 6.84)
... ... ...
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Example

Fort Collins, Colorado precipitation
Return Levels

CI’s from return.level are based on the delta method, which
assumes normality for the return levels. For longer return periods
(e.g., beyond the range of the data), this assumption may not be
valid. Can check by looking at the profile likelihood.
gev.prof( fit, m=100, xlow=2, xup=8)

Highly skewed! Using locator(2), a better approximation for the
(95%) 100-year return level CI is about (3.9, 8.0).
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Example

Fort Collins, Colorado precipitation
Probability of annual maximum precipitation at least as large as that
during the 28 July 1997 flood (i.e., Pr{max(X) ≥ 1.54 in.}).

# Using the ’pgev’ function from the "evd" package.
pgev( 1.54, loc=fit$mle[1],

scale=fit$mle[2],
shape=fit$mle[3],
lower.tail=FALSE)

pgev( 4.6, loc=fit$mle[1],
scale=fit$mle[2],
shape=fit$mle[3],
lower.tail=FALSE)
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Long-term trend

Phoenix minimum temperature
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Source: U.S. National Weather
Service Forecast office at
the Phoenix Sky Harbor
Airport. For more info.,
see Balling et al. (1990),
J. Climate, 3, 1491–1494.
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Long-term trend

Phoenix minimum temperature

Recall: min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}.
Assume summer minimum temperature in year t = 1, 2, . . . has GEV

distribution with:
µ(t) = µ0 + µ1 · t

log σ(t) = σ0 + σ1 · t

ξ(t) = ξ
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Long-term trend

Phoenix minimum temperature

data( HEAT)
plot( HEAT$Tmin, type="l")
fit0 <- gev.fit( -HEAT$Tmin)
fit1 <- gev.fit( -HEAT$Tmin,

ydat=matrix( 1:dim( HEAT)[1], ncol=1), mul=1)
fit2 <- gev.fit( -HEAT$Tmin,

ydat=matrix( 1:dim( HEAT)[1], ncol=1), mul=1,
sigl=1, siglink=exp)

deviancestat( fit0$nllh, fit1$nllh, v=1)
deviancestat( fit0$nllh, fit2$nllh, v=2)
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Long-term trend

Phoenix minimum temperature
Note: To convert back to min{X1, . . . , Xn},
change sign of location parameters. But note that model is
Pr{−X ≤ x} = Pr{X ≥ −x} = 1− F (−x).

µ̂(t) ≈ 66.170 + 0.196t

log σ̂(t) ≈ 1.338− 0.009t

ξ̂ ≈ −0.21
Likelihood ratio test

for µ1 = 0 (p-value < 10−5),

for σ1 = 0 (p-value ≈ 0.366).
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Long-term trend

Phoenix minimum temperature
Model Checking. Found the best model from a range of models,
but is it a good representation of the data? Problem, what are the
quantiles when the distribution is changing with a covariate?
Transform data to a common distribution, and check the qq-plot.

1. GEV to exponential

εt =

{
1 +

ξ̂(t)

σ̂(t)
[Xt − µ̂(t)]

}−1/ξ̂(t)
2. GEV to Gumbel (used by ismev/extRemes)

εt =
1

ξ̂(t)
log

{
1 + ξ̂(t)

(
Xt − µ̂(t)
σ̂(t)

)}
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Long-term trend

Phoenix minimum temperature
Model Checking. Found the best model from a range of models,
but is it a good representation of the data? Problem, what are the
quantiles when the distribution is changing with a covariate?
Transform data to a common distribution, and check the qq-plot.
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Long-term trend

Phoenix minimum temperature
See help file for gev.effective.rl to see how to compute effective
return levels.
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Long-term trend

Physically based covariates
Winter maximum daily temperature at Port Jervis, New York

LetX1, . . . , Xn be the winter maximum temperatures, and Z1, . . . , Zn
the associated Arctic Oscillation (AO) winter index. Given Z = z,
assume conditional distribution of winter maximum temperature is
GEV with parameters

µ(z) = µ0 + µ1 · z

log σ(z) = σ0 + σ1 · z

ξ(z) = ξ

Data source: National Oceanic and Atmospheric Administration/National
Climate Data Center (NOAA/NCDC). For more, see Thompson and
Wallace (1998), Geophys. Res. Lett., 25, 1297–1300.
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Long-term trend

Physically based covariates
Winter maximum daily temperature at Port Jervis, New York

data( PORTw)
names( PORTw)
dim( PORTw)
?PORTw # Get more information about these data.
plot( PORTw$Year, PORTw$TMX1, type="l",

xlab="Year", ylab="Winter Max Temp (deg C)")
fit0 <- gev.fit( PORTw$TMX1)
fit1 <- gev.fit( PORTw$TMX1, ydat=PORTw, mul=9)
fit2 <-gev.fit( PORTw$TMX1, ydat=PORTw, sigl=9, siglink=exp)
fit12 <- gev.fit( PORTw$TMX1,

ydat=PORTw, mul=9, sigl=9, siglink=exp)
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Long-term trend

Physically based covariates
Winter maximum daily temperature at Port Jervis, New York

deviancestat( fit0$nllh, fit1$nllh, v=1)
deviancestat( fit0$nllh, fit2$nllh, v=1)
deviancestat( fit0$nllh, fit12$nllh, v=2)
deviancestat( fit1$nllh, fit12$nllh, v=1)
deviancestat( fit2$nllh, fit12$nllh, v=1)

Note: cannot use likelihood-ratio test (deviancestat) to directly test
fit1 vs. fit2. Why?
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Long-term trend

Physically based covariates

µ̂(z) ≈ 15.26 + 1.175 · z

log σ̂(z) = 0.984− 0.044 · z

ξ(z) = −0.186

Likelihood-ratio test for µ1 = 0 (p-value < 0.001)
Likelihood-ratio test for σ1 = 0 (p-value ≈ 0)
Likelihood-ratio test for µ1 = 0 and σ1 = 0 (p-value ≈ 0.002)
Likelihood-ratio test for σ1 = 0, given fit1 (p-value ≈ 0.635)
Likelihood-ratio test for µ1 = 0 given fit2 (p-value ≈ 0)
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Peaks Over Thresholds (POT) Approach

Hurricane damage
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Economic damage caused
by hurricanes from 1926
to 1995.

Trends in societal
vulnerability removed.

Excess over threshold of
u = 6 billion US$.
For more, see Pielke and
Landsea (1998), Wea.
Forecasting, 13, 621–631.
Data source:

http://sciencepolicy.colorado.edu/pielke/hp_roger/hurr_norm/data.html
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Peaks Over Thresholds (POT) Approach

Hurricane damage

data( damage)
?damage
plot( damage[,1], damage[,3],

xlab="", ylab="Economic Damage", type="l", lwd=2)

gpd.fitrange( damage$Dam, umin=1, umax=15, nint=15)

Choose a threshold low enough (lower variance), but high enough
that the assumptions for the GPD are valid (lower bias). Looks like
6 billion USD would work; maybe something lower could also work.
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Peaks Over Thresholds (POT) Approach

Hurricane damage

Hurricane Dennis (2005)
Caused at least 89 deaths and
2.23 billion USD in damage.

Impactfull despite being under the 6 billion USD threshold!
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Peaks Over Thresholds (POT) Approach

Hurricane damage
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Heavy tail!
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Peaks Over Thresholds (POT) Approach

Hurricane damage
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Peaks Over Thresholds (POT) Approach

Dependence above threshold
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Peaks Over Thresholds (POT) Approach

Dependence above threshold

# Fit without de-clustering.
plot( -Tphap$MinT, type="l")
abline(h=-73, col="darkred")
phx.fit0 <- gpd.fit( -Tphap$MinT, -73)
gpd.diag( phx.fit0)

# With runs de-clustering (r=1).
phx.dc1 <- dclust( -Tphap$MinT, u=-73, r=1,

cluster.by=Tphap$Year)
phxdc1.fit0 <- gpd.fit( phx.dc1$xdat.dc, -73)
plot( phx.dc1$xdat.dc, type="l")
abline(h=-73, col="darkred")
gpd.diag( phxdc1.fit0)
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Peaks Over Thresholds (POT) Approach

Dependence above threshold

eiAnalyze( -Tphap$MinT, -73)
phx.dc11 <- dclust( -Tphap$MinT, u=-73, r=11,

cluster.by=Tphap$Year)
plot( phx.dc11$xdat.dc, type="l")
phxdc11.fit0 <- gpd.fit( phx.dc11$xdat.dc, -73)
abline(h=-73, col="darkred")
gpd.diag( phxdc11.fit0)
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Peaks Over Thresholds (POT) Approach

Long-term warming trend
Varying threshold

lm( -MinT Year, data=Tphap)
plot( -Tphap$MinT, type="l")
lines( 1:dim( Tphap)[1], -60-0.1764*Tphap$Year,

col="darkorange")
phx.fit1 <- gpd.fit( -Tphap$MinT, -60-0.1764*Tphap$Year)
gpd.diag( phx.fit1)
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Peaks Over Thresholds (POT) Approach

Long-term warming trend
parameter covariate: log(σ) = σ0 + σ1t, t = 0, . . . , 0, 1, . . . , 1, 2, . . .

yr <- matrix( Tphap$Year - 48, ncol=1)
phx.fit2 <- gpd.fit( -Tphap$MinT, -73,

ydat=yr, sigl=1, siglink=exp)
gpd.diag( phx.fit2)

# Both ...
phxfit.both <- gpd.fit( -Tphap$MinT, -60-0.1764*Tphap$Year,

ydat=yr, sigl=1, siglink=exp)
gpd.diag( phxfit.both)
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Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Fort Collins, Colorado daily precipitation
Analyze daily data instead of just annual maxima
(ignoring annual cycle for now).

Orthogonal Approach

λ̂ = 365.25 · No. Xi > 0.395

No. Xi
≈ 10.6 per year

σ̂∗ ≈ 0.323, ξ̂ ≈ 0.212

Using gpd.fit to get σ̂∗ and ξ̂.
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Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Fort Collins, Colorado daily precipitation
data( FtCoPrec)
class( FtCoPrec)
colnames( FtCoPrec)
fit0 <- gpd.fit( FtCoPrec[,"Prec"], 0.395)

# Now fit Poisson Process (PP) to these data.
fit1 <- pp.fit( FtCoPrec[,"Prec"], 0.395)
pp.diag( fit1)
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Peaks Over Thresholds (POT) Approach

Point Process: frequency and intensity of threshold excesses
Fort Collins, Colorado daily precipitation
Analyze daily data instead of just annual maxima
(ignoring annual cycle for now).

Point Process

µ̂ ≈ 1.384

σ̂ = 0.533

ξ̂ ≈ 0.213

λ̂ =

[
1 +

ξ̂

σ̂
(u− µ̂)

]−1/ξ̂
≈ 10.6 per year
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Risk Communication Under Stationarity

Unchanging climate

Compare previous GPD fits (with and without de-clustering).

# Without de-clustering.
return.level( phx.fit0)

# With de-clustering (r=1).
return.level( phxdc.fit0)

# With de-clustering (r=11).
return.level( phxdc11.fit0)

Note: little difference in estimates, but relatively large difference in
confidence intervals. Less difference between r=1 and r=11 runs-
declustered fits.
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Non-Stationarity

Cyclic variation
Fort Collins, Colorado precipitation
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Annual Cycle

Fort Collins, Colorado precipitation Orthogonal approach. First fit
annual cycle to Poisson rate parameter (T = 365.25):

log λ(t) = λ0 + λ1 sin

(
2πt

T

)
+ λ2 cos

(
2πt

T

)
prec <- FtCoPrec[,"Prec"]
ind <- prec > 0.395
trend1 <- sin(2*pi*(1:length(prec))/365.25)
trend2 <- cos(2*pi*(1:length(prec))/365.25)
ycov <- cbind( trend1, trend2)
lamfit <- glm( ind˜ trend1+trend2, family=poisson())
summary( lamfit)
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Annual Cycle

Fort Collins, Colorado precipitation

log λ̂(t) ≈ −3.72 + 0.22 sin

(
2πt

T

)
− 0.85 cos

(
2πt

T

)
Likelihood ratio test for λ1 = λ2 = 0 (p-value ≈ 0).
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Annual Cycle

Fort Collins, Colorado precipitation Orthogonal approach. Next fit
GPD with annual cycle in scale parameter.

log σ∗(t) = σ∗0 + σ∗1 sin

(
2πt

T

)
+ σ∗2 cos

(
2πt

T

)

fitOrth <- gpd.fit( prec, 0.395, ydat=ycov, sigl=c(1,2), siglink=exp)
fitOrth0 <- gpd.fit( prec, 0.395)
pchisq( -2*(fitOrth$nllh - fitOrth0$nllh), 2, lower.tail=FALSE)
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Annual Cycle

Fort Collins, Colorado precipitation

log σ̂∗(t) ≈ −1.24 + 0.09 sin

(
2πt

T

)
− 0.30 cos

(
2πt

T

)
, ξ̂ ≈ 0.18

Likelihood ratio test for σ∗1 = σ∗2 = 0 (p-value < 10−5)
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Annual Cycle

Fort Collins, Colorado precipitation
Annual cycle in location and scale parameters of the
GEV re-parameterization approach PP model with
t = 1, 2, ..., and T = 365.25.

µ(t) = µ0 + µ1 sin
(
2πt
T

)
+ µ2 cos

(
2πt
T

)
log σ(t) = σ0 + σ1 sin

(
2πt
T

)
+ σ2 cos

(
2πt
T

)
ξ(t) = ξ

44



Annual Cycle

Fort Collins, Colorado precipitation
fit0 <- pp.fit( prec, 0.395)
fit1 <- pp.fit( xdat=prec, threshold=0.395, npy=365.25,

ydat=ycov, mul=c(1,2))
fit2 <- pp.fit( xdat=prec, threshold=0.395, npy=365.25,

ydat=ycov, sigl=c(1,2), siglink=exp)
fit <- pp.fit( xdat=prec, threshold=0.395, npy=365.25,

ydat=ycov, mul=c(1,2), sigl=c(1,2), siglink=exp)

# Likelihood ratio test of mu1=mu2=0.
pchisq( -2*(fit$nllh-fit2$nllh), 2, lower.tail=FALSE)

# sigma1=sigma2=0.
pchisq( -2*(fit$nllh - fit1$nllh), 2, lower.tail=FALSE)
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Annual Cycle

Fort Collins, Colorado precipitation

µ̂(t) ≈ 1.281− 0.085 sin
(
2πt
T

)
− 0.806 cos

(
2πt
T

)
log σ̂(t) ≈ −0.847− 0.123 sin

(
2πt
T

)
− 0.602 cos

(
2πt
T

)
ξ̂ ≈ 0.182

Likelihood ratio test for µ1 = µ2 = 0 (p-value ≈ 0).
Likelihood ratio test for σ1 = σ2 = 0 (p-value ≈ 0).
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Annual Cycle

Fort Collins, Colorado precipitation
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