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Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 are iid with distribution 𝐹, and we want to know 

ℙ 𝑀𝑛 ≤ 𝑧 , where 𝑀𝑛 = max 𝑋1, 𝑋2, … , 𝑋𝑛 .

If 𝑀𝑛 ≤ 𝑧, then every 𝑋1, 𝑋2, … , 𝑋𝑛 is ≤ 𝑧.  So,

ℙ 𝑀𝑛 ≤ 𝑧 = ℙ 𝑋1 ≤ 𝑧, 𝑋2 ≤ 𝑧,… , 𝑋𝑛 ≤ 𝑧

Then, because they are independent…

ℙ 𝑋1 ≤ 𝑧, 𝑋2 ≤ 𝑧,… , 𝑋𝑛 ≤ 𝑧 = ℙ 𝑋1 ≤ 𝑧 ⋅ ℙ 𝑋2 ≤ 𝑧 ⋯ℙ 𝑋𝑛 ≤ 𝑧

And because they are identically distributed with distribution 𝐹…

ℙ 𝑋1 ≤ 𝑧 ⋅ ℙ 𝑋2 ≤ 𝑧 ⋯ℙ 𝑋𝑛 ≤ 𝑧 =

ℙ 𝑋1 ≤ 𝑧 ⋅ ℙ 𝑋1 ≤ 𝑧 ⋯ℙ 𝑋1 ≤ 𝑧 =

ℙ 𝑋1 ≤ 𝑧 𝑛 = 𝐹𝑛 𝑧

Extreme-Value Analysis (EVA)



But, there is a problem…

0 ≤ 𝐹 ≤ 1, so that 𝐹𝑛 → 0 quickly and because we must estimate 𝐹, 

small errors in the estimation are exponentiated by the sample size!

Extreme-Value Analysis (EVA)
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The two averages are the 

same.  The first averages six 

numbers while the second 
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Sum Stability

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be iid random variables.  Let ത𝑋𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 and let ത𝑌𝑚 =

1

𝑚𝑘
σ𝑗=1
𝑚 𝑌𝑗, 

where 

𝑌1 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑘 , 𝑌2 = 𝑋𝑘+1 +𝑋𝑘+2 +⋯+ 𝑋2𝑘 , … , 𝑌𝑚 = 𝑋𝑛−𝑘+1 +⋯+ 𝑋𝑛 .

The distribution of ത𝑋𝑛 should be the same as that of ത𝑌𝑚.  And sum stability says that it is!  

In this case, the normal distribution is sum-stable (among others).  For example, if 𝑋𝑖 ∼

𝑁 𝜇, 𝜎2 for all 𝑖 = 1,… , 𝑛, then σ𝑖
𝑛𝑋𝑖 ∼ 𝑁 𝑛𝜇, 𝑛𝜎2 .  Note the distribution is the same but 

for a change in location and some re-scaling.
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Max Stability

Similar to the sum-stable case,

max 𝑋1, … , 𝑋𝑛 = max max 𝑋1 , … , 𝑋 𝑛
2

, max 𝑋 𝑛
2
+1
, … , 𝑋𝑛 =

max max 𝑋1, 𝑋2 , 𝑋3 , max 𝑋4 , 𝑋5, 𝑋6 , … ,max 𝑋𝑛−2, 𝑋𝑛−1, 𝑋𝑛

and so on. 
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Max Stability

So, apart from some re-scaling, we seek a distribution 𝐺 such that 𝐺 𝑎𝑛𝑧 + 𝑏𝑛 =
𝐺𝑛 𝑧 for some sequences of constants 𝑎𝑛 > 0 and 𝑏𝑛.

Such a distribution is said to be max-stable, and there is only one (family) that fits 

the bill!  The generalized extreme-value distribution (GEV).

𝐺 𝑧 = exp − 1 +
𝜉

𝜎
𝑧 − 𝜇

+

−
1
𝜉

𝜉 = 0 defined by continuity

𝜉 < 0

𝜉 > 0

𝐸 𝑍 = 𝜇 −
𝜎 1 − Γ 1 − 𝜉

𝜉
, 𝜉 < 1

𝕍 𝑍 =
𝜎2 Γ 1 − 2𝜉 − Γ2 1 − 𝜉

𝜉2
, 𝜉 <

1

2
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GEV Return Levels

A useful, if often misunderstood, quantity that is readily obtained 
from the GEV distribution is the 𝑇-year return level.

A 𝑇-year return level is the value expected to be observed, on 
average, once every 𝑇 years.

It is the 1 −
1

𝑇
quantile of the GEV distribution.



GEV Return Levels

Let 𝑝 =
1

𝑇
, and let 𝑦𝑝 = −

1

log 1−𝑝
, then the associated return level, 

𝑧𝑝, is given by

𝑧𝑝 = ቐ
𝜇 +

𝜎

𝜉
𝑦𝑝
𝜉
− 1 , 𝜉 ≠ 0

𝜇 + 𝜎 log 𝑦𝑝 , 𝜉 = 0

Plotting 𝑧𝑝 against log 𝑦𝑝 gives a plot that is:

• A straight line if 𝜉 = 0 (and close to a straight line if 𝜉 ≈ 0).

• A concave curve with no finite upper bound if 𝜉 > 0.

• A convex curve with an asymptote at the upper limit 𝜇 −
𝜎

𝜉
as 𝑝 → 0 if 𝜉 < 0.



extRemes: 

An R 

software 

package

data( “Fort” )
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Fit GEV to block maxima

data( “Fort” )

plot( Prec ~ obs, data = Fort, col = “darkblue”, 

type = “h”, lwd = 1.5 )

bmFort <- blockmaxxer(Fort, which = 6, 

blocks = Fort$year, units = “inches/100”  )

plot( Prec ~ year, data = bmFort, 

col = "darkblue", lwd = 1.5, type = "h" )

fit0 <- fevd( Prec, data = bmFort )

fit0

plot( fit0 )

ci( fit0 )

ci( fit0, type = "parameter" )
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extRemes: 

An R 

software 

package

fevd(x = Prec, data = bmpcp)

[1] "Estimation Method used: MLE"

Negative Log-Likelihood Value:  104.9645 

Estimated parameters:

location     scale     shape 

1.3466597 0.5328046 0.1736264 

Standard Error Estimates:

location      scale      shape 

0.06168793 0.04878843 0.09195458 

Estimated parameter covariance matrix.

location         scale         shape

location  0.003805401  0.0017067043 -0.0020838301

scale     0.001706704  0.0023803113 -0.0008692638

shape    -0.002083830 -0.0008692638  0.0084556445

AIC = 215.9291 

BIC = 223.7446 

copyright 2022
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Fit GEV to block maxima

plot( fit0, type = “trace” )

copyright 2022



Fit GEV to block maxima

Test for a trend in the maxima by fitting a GEV whose 
location parameter has a linear trend with year (i.e., 
𝜇 𝑡 = 𝜇0 + 𝜇1𝑡, where 𝑡 is the year):

fit1 <- fevd( Prec, data = bmFort, 

location.fun = ~year , units = “inches/100” )

fit1

plot( fit1, type = “qq” )

lr.test( fit0, fit1 )

Likelihood-ratio Test

data:  PrecPrec

Likelihood-ratio = 0.13922, chi-square critical value = 3.8415,

alpha = 0.0500, Degrees of Freedom = 1.0000, p-value = 0.7091

alternative hypothesis: greater

copyright 2022

No significant trend



Modeling block maxima

GEV distribution

Fit the GEV distribution to block maxima where the blocks are 
long.

Advantages of modeling block maxima

• Usually do not need to worry about diurnal trends, or other 
cyclic behavior,

• Usually do not need to worry about temporal dependence,

• Quantiles are easy to find and are equivalent to the 𝑇-year 
return level.
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Counting Exceedances

Suppose, again, 𝑋1, 𝑋2, … , 𝑋𝑛 are iid with distribution 𝐹.

Let 𝑢 represent a high value and suppose we are interested in 
ℙ 𝑋𝑖 > 𝑢 = 1 − 𝐹 𝑢 , 𝑖 = 1, … , 𝑛.

Then 1 − 𝐹 𝑢 can be thought of as the probability of “success” 
for a binomial distribution.

If 1 − 𝐹 𝑢 → 0 fast enough that the expected number of 
successes is constant, then the Poisson distribution is a good 
approximation.

Note that if 𝑁 ∼ Poisson 𝜆 , with 𝑁 the number of events where 
𝑋𝑖 > 𝑢, for some large constant threshold 𝑢, then 

ℙ max 𝑋1, … , 𝑋𝑛 < 𝑢 = ℙ 𝑁 = 0 = 𝑒−𝜆.
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Counting Exceedances

data( “Rsum” )

fpois( Rsum$Ct )

Test for Equality of (Poisson) Mean and Variance

data:  Rsum$Ct

Chi-square(n - 1) = 67.488, mean = 1.8169, variance = 1.7517,

degrees of freedom = 70.0000, p-value = 0.5629

alternative hypothesis: greater

copyright 2022
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Counting Exceedances

Incorporate ENSO state as a covariate:

fit <- glm( Ct ~ EN, data = Rsum, family = poisson() )

fit
Call:  glm(formula = Ct ~ EN, family = poisson(), data = Rsum)

Coefficients:

(Intercept)           EN  

0.5751      -0.2483  

Degrees of Freedom: 70 Total (i.e. Null);  69 Residual

Null Deviance:      72.23 

Residual Deviance: 67.49        AIC: 229.1

copyright 2022

Numbers of Hurricanes

Model is found to be

log 𝜆 ≈ 0.58 − 0.25 ⋅ ENSO

Use summary( fit ) to test for 

significance of the inclusion of ENSO.



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

Besides counting exceedances over a threshold, we might want to 
also infer about the magnitudes of the excesses, 𝑋 − 𝑢, conditioned 
on 𝑋 > 𝑢 and 𝑢 a high threshold.

Analogous to the block maxima case, there is a limiting distribution 
family that encompasses three types that is appropriate for modeling 
excesses over a high threshold, the generalized Pareto (GP) family.

Three types: 

• Beta distribution when 𝜉 < 0 (upper bound), 

• Exponential distribution 𝜉 = 0 (light upper tail),

• Pareto distribution when 𝜉 > 0 (heavy upper tail).



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

The GPD is given by:

ℙ 𝑋 > 𝑥ȁ𝑋 > 𝑢 = 𝐻 𝑥 = 1 − 1 + 𝜉
𝑥 − 𝑢

𝜎𝑢 +

−1/𝜉

Looks like the exponent of 

the GEV distribution

Threshold 

“replaces” 

the location 

parameter

Scale parameter depends on 

the threshold

Inner part of “exponent” term must be 

positive.  Otherwise, it is set to zero 

(same as for GEV distribution), so it, and 

its associated likelihood, also has 

support that depends on the parameter 

values!
𝐻 𝑥 = 1 − 𝑒

− 𝑥−𝑢
𝜎 , as 𝜉 → 0

If 𝐦𝐚𝐱 𝑿𝟏, … , 𝑿𝒏 ∼ GEV 𝝁,𝝈, 𝝃 then 

𝐘 = 𝑿 − 𝒖ȁ𝑿 > 𝒖 ∼ GP 𝝈𝒖, 𝝃

where 𝝈𝒖 = 𝝈+ 𝝃 𝒖 − 𝝁 .

Similarly, if we condition 𝒀 on a higher 

threshold, say 𝝂, then 𝒀 ∼ GP 𝝈𝝂, 𝝃 , 

where 𝝈𝝂 = 𝝈𝒖 + 𝝃 𝝂 − 𝒖 .  Called POT-

stability



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

Quantiles are easy to find, as with the GEV distribution, but return 
levels require estimation of the probability of exceeding the 
threshold.  They are given by:

𝑥𝑚 = ቐ
𝑢 +

𝜎𝑢
𝜉

𝑚𝜁𝑢
𝜉 − 1 , 𝜉 ≠ 0

𝑢 + 𝜎 log 𝑚𝜁𝑢 , 𝜉 = 0

where 𝜁𝑢 = ℙ 𝑋 > 𝑢 and 𝑥𝑚 is the value that is exceeded, on 
average, once every 𝑚 observations.



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

data("damage" )

par(mfrow = c(2, 2))

plot(damage$Year, damage$Dam, xlab = "Year",

ylab = "U.S. Hurricane Damage (billion USD)", 

cex = 1.25, cex.lab = 1.25, col = "darkblue", 

bg = "lightblue", pch = 21)

plot(damage[, "Year"], log(damage[, "Dam"]), xlab = "Year",

ylab = "ln(Damage)", ylim = c(-10, 5), cex.lab = 1.25,

col = "darkblue", bg = "lightblue", pch = 21)

qqnorm(log(damage[, "Dam"]), ylim = c(-10, 5), cex.lab = 1.25)



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

mrlplot(damage$Dam, xlim = c(0, 12))

Before fitting the GPD to data, must choose a threshold, which is a bias-variance trade-off

Scale is transformed so that it is not a function of the 

threshold by 𝜎∗ = 𝜎𝑢 − 𝜉𝑢



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

range(damage$Year)

1995 - 1926 + 1

dim(damage)

144 / 70

fitD <- fevd(Dam, damage, 

threshold = 6, 

type = "GP",

time.units = "2.06/year" )

fitD

plot(fitD)

Estimate of the number of points per 

year (default is the usual 365.25 per 

year).  Only important for getting the 

empirical return levels on the return-

level plot.



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

Fort Collins, Colorado 

precipitation data (in/100)



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

Fort Collins, Colorado precipitation data (in/100)

fitFC <- fevd(Prec, Fort, threshold = 0.395, type = "GP")

fitFC

plot(fitFC)

[1] "Estimation Method used: MLE"

Negative Log-Likelihood Value:  85.07827 

Estimated parameters:

scale     shape 

0.3224764 0.2119121 

Standard Error Estimates:

scale      shape 

0.01571629 0.03840740 

Estimated parameter covariance matrix.

scale         shape

scale  0.0002470018 -0.0003976316

shape -0.0003976316  0.0014751280

AIC = 174.1565 

BIC = 184.0905 



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

Fort Collins, Colorado precipitation data (in/100)

fitFC <- fevd(Prec, Fort, threshold = 0.395, type = "GP")

fitFC

plot(fitFC)

fitFC2 <- fevd(Prec, Fort, threshold = 0.395, scale.fun =

~ cos(2 * pi * tobs / 365.25) + sin(2 * pi * tobs / 365.25),

type = "GP", use.phi = TRUE, units = "inches")

plot(fitFC2, type = "qq" )

lr.test(fitFC, fitFC2) Likelihood-ratio Test

data:  Prec

Likelihood-ratio = 24.327, chi-square critical value = 5.9915, 

alpha = 0.0500, Degrees of Freedom = 2.0000, p-value = 5.219e-06

alternative hypothesis: greater
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extRemes: 

An R 

software 

package

Auto tail-dependence function (Fort Collins pcp.)

atdf( Fort$Prec, u = 0.8 )

copyright 2022

extremalindex( Fort$Prec, threshold = 0.395 )

Intervals Method Estimator for the Extremal Index

NULL

theta.tilde used because there exist inter-exceedance times > 2.

extremal.index number.of.clusters run.length

0.6246345        651.0000000          9.0000000 

Excesses over a high threshold

Dependence in the data (extremes)



Excesses over a high threshold
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Generalized Pareto Distribution (GPD)

Fort Collins, Colorado precipitation data (in/100)

dcFC <- decluster( Fort, which.cols = 6, threshold = 0.395, r = 9 )

Fort <- cbind( Fort, "dcPrec" = c( dcFC ) )

plot( dcPrec ~ obs, data = Fort, ylab = "declustered precipitation (in/100)",

col = "darkblue", type = "h" )

abline( h = 0.395, lty = 2, lwd = 2 )

extremalindex( Fort$dcPrec, threshold = 0.395 )

Now you can do the fitting all over with the 

declustered data, and obtain more accurate

uncertainty information.



Point-process Approach
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Poisson point-process characterization

• If we combine the counting of exceedances with the intensity 
information (i.e., the excesses), then we have a point-process.  

• We can do so orthogonally by fitting the frequency of exceeding 
the high threshold and the GPD to the data separately, called the 
orthogonal approach.

• Better, we can fit a two-dimensional Poisson point-process to the 
data so that we capture the uncertainty in estimating each part all 
at once.

• Waiting times between excesses are exponentially distributed with 
unit mean.

• Exponential distribution has a memoryless property (related to the 
POT-stability property).



Poisson point process characterization of a GEV

Relation of GEV 𝜇, 𝜎, 𝜉 to those of a Poisson point process with 
parameters 𝜆, 𝜎∗, 𝜉

1. 𝜉 is the same

2. log 𝜆 = −
1

𝜉
log 1 + 𝜉

𝑢−𝜇

𝜎

3. 𝜎∗ = 𝜎 + 𝜉 𝑢 − 𝜇

copyright 2022

Poisson point-process characterization
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An R 

software 

package

fit0 <- fevd( Prec, 

data = Fort, 

threshold = 0.395, 

type = "PP" )

fit0

plot( fit0 )

copyright 2022

Poisson point process characterization of a GEV
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Extreme-Value Analysis (EVA)

The EVD’s do not work for all extrema.  Some maxima over long blocks, or excesses over a 

high threshold, do not converge to a non-degenerate distribution at all.

A super-heavy tail distribution, such as the log-Pareto given by 𝐹 𝑥 = 1 − log−1/𝛼 𝑥 , is one 

such type of distribution that has no non-degenerate distribution for its extremes.
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Estimation

• Maximum Likelihood

– Must use numerical optimization

– Regularity assumptions required for the MLE to follow a normal distribution are not met 
when 𝜉 ≤ −1/2 (Smith 1985; Büecher and Segers 2017)

– Many times, the likelihood curve is rather steep and/or has undefined points

– Easy to incorporate covariates into parameter estimates

• L-moments

– Quick and easy to compute

– Must use bootstrap methods for uncertainty

– Not as easy to incorporate covariates into parameter estimates

– Often used when sample size is small

• Bayesian

– Easy to incorporate uncertainty into parameter estimates

– Difficult to get good mixing in MCMC

• Generalized MLE (GMLE, aka penalized MLE; Martins and Stedinger 2000; 2001)

– Often useful to avoid problematic areas

• Various

– Hill estimator (not always useful; Resnick 2007, p. 86)

– Non-parametric (e.g., Huang et al. 2018)

– weighted composite log-likelihood (Stein 2023)

– Neural Networks (e.g., Rai et al. 2023)



copyright 2022

Uncertainty Estimation

• Normal Approximation CI’s

– When using MLE or GMLE

– Normality assumption may not be valid (e.g., if 𝜉 ≤ −1/2 or for long return levels)

– Delta method an be used to obtain CI’s for return levels

– Quick and easy to compute

• Profile likelihood

– Generally the most accurate choice

– Can be difficult to obtain

– Difficult to automate

• Bayesian

• Bootstrap

– Issues abound for bootstrapping extremes (cf. Bickel and Freedman 1981; see G. 2020 
for a recent review)

– Will never sample a maximum higher than what is observed in the data, and will often 
obtain samples without the maximum from the data

– For heavy-tailed distributions, should use an 𝑚 < 𝑛 bootstrap

– Parametric bootstrap is good but can yield intervals that are too narrow (cf. Kyselý 2002; 
Schendel and Thongwichian 2015; 2017)

– Test-inversion bootstrap (TIB) generally the best choice (similar to profile likelihood; 
Schendel and Thongwichian 2015; 2017)

• Requires use of a root-finding algorithm when covariates are included

• Often difficult to obtain a solution in general (cf. G. 2020).



References

Bickel, P. J. and D. A. Freedman (1981) Some asymptotic theory for the bootstrap.  The Annals of Statistics, 9

(6), 1196 – 1217, doi: 10.1214/aos/1176345637.

Büecher, A., and J. Segers, 2017: On the maximum likelihood estimator for the generalized extreme-value 

distribution. Extremes, 20, 839–872, https://doi.org/10.1007/s10687-017-0292-6.

Gilleland, E., 2020. Bootstrap methods for statistical inference. Part II: Extreme-value analysis. Journal of 

Atmospheric and Oceanic Technology, 37 (11), 2135 - 2144, doi: 10.1175/JTECH-D-20-0070.1.

Huang, W. K., Nychka, D. W., and Zhang, H. (2019). Estimating precipitation extremes using the log-

histospline. Environmetrics, 30(4):e2543

Kyselý, J., 2002: Comparison of extremes in GCM-simulated, downscaled and observed central-European 

temperature series. Climate Res., 20, 211–222, https://doi.org/10.3354/cr020211.

Martins ES, Stedinger JR (2000). “Generalized Maximum-Likelihood Generalized Extreme-Value Quantile 

Estimators for Hydrologic Data.” Water Resources Research, 36(3), 737–744. doi:10.1029/1999wr900330.

Martins ES, Stedinger JR (2001). “Generalized Maximum-Likelihood Pareto-Poisson Estimators for Partial 

Duration Series.” Water Resources Research, 37(10), 2551–2557. doi:10.1029/2001wr000367.

https://doi.org/10.1007/s10687-017-0292-6
https://doi.org/10.1175/JTECH-D-20-0070.1
https://doi.org/10.3354/cr020211


References

Rai, S., A. Hoffman, S. Lahiri, D. W. Nychka, S. R. Sain, S. Banyopadhyay, 2023. Fast parameter 

estimation of Generalized Extreme Value distribution using Neural Networks. doi: 

10.48550/arXiv.2305.04341.

Resnick, S. I., 2007: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in 

Operations Research and Financial Engineering, Springer, 404 pp.

Schendel, T., and R. Thongwichian, 2015: Flood frequency analysis: Confidence interval estimation by 

test inversion bootstrapping. Adv. Water Resour., 83, 1–9, 

https://doi.org/10.1016/j.advwatres.2015.05.004.

Schendel, T., and R. Thongwichian, 2017: Confidence intervals for return levels for the peaks-over-

threshold approach. Adv. Water Resour., 99, 53–59, https://doi.org/10.1016/j.advwatres.2016.11.011.

Smith, R. L., 1985: Maximum likelihood estimation in a class of nonregular cases. Biometrika, 72, 67–

90, https://doi.org/10.1093/biomet/72.1.67.

Stein, Michael L., 2023.  A weighted composite log-likelihood approach to parametric estimation of the 

extreme quantiles of a distribution, Extremes, 10.1007/s10687-023-00466-w.

https://doi.org/10.1016/j.advwatres.2015.05.004
https://doi.org/10.1016/j.advwatres.2016.11.011
https://doi.org/10.1093/biomet/72.1.67

	Slide 1
	Slide 2: Extreme Values
	Slide 3: What is extreme?
	Slide 4: What is extreme?
	Slide 5: What is extreme?
	Slide 6: Extreme-Value Analysis (EVA)
	Slide 7
	Slide 8
	Slide 9: Sum Stability
	Slide 10: Sum Stability
	Slide 11: Max Stability
	Slide 12: Max Stability
	Slide 13: Max Stability
	Slide 14
	Slide 15
	Slide 16: GEV Return Levels
	Slide 17: GEV Return Levels
	Slide 18: extRemes: An R software package
	Slide 19: Fit GEV to block maxima
	Slide 20: extRemes: An R software package
	Slide 21: Fit GEV to block maxima
	Slide 22: Fit GEV to block maxima
	Slide 23: Modeling block maxima
	Slide 24: Counting Exceedances
	Slide 25: Counting Exceedances
	Slide 26: Counting Exceedances
	Slide 27: Excesses over a high threshold
	Slide 28: Excesses over a high threshold
	Slide 29: Excesses over a high threshold
	Slide 30: Excesses over a high threshold
	Slide 31: Excesses over a high threshold
	Slide 32: Excesses over a high threshold
	Slide 33: Excesses over a high threshold
	Slide 34: Excesses over a high threshold
	Slide 35: Excesses over a high threshold
	Slide 36: extRemes: An R software package
	Slide 37: extRemes: An R software package
	Slide 38: Excesses over a high threshold
	Slide 39: Point-process Approach
	Slide 40: Poisson point process characterization of a GEV
	Slide 41: extRemes: An R software package
	Slide 42: extRemes: An R software package
	Slide 43: Extreme-Value Analysis (EVA)
	Slide 44: Extreme-Value Analysis (EVA)
	Slide 45
	Slide 46
	Slide 47: References
	Slide 48: References

