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Statistical Hypothesis Testing

This talk mainly covers the following papers:
• Gilleland, E., 2020. Bootstrap methods for statistical inference. Part I: 

Comparative forecast verification for continuous variables. Journal of 
Atmospheric and Oceanic Technology, 37 (11), 2117 - 2134, doi: 
10.1175/JTECH-D-20-0069.1.

• Gilleland, E., 2020. Bootstrap methods for statistical inference. Part II: 
Extreme-value analysis. Journal of Atmospheric and Oceanic Technology, 37
(11), 2135 - 2144, doi: 10.1175/JTECH-D-20-0070.1.

• Gilleland, E., A. S. Hering, T. L. Fowler, and B. G. Brown, 2018. Testing the 
tests: What are the impacts of incorrect assumptions when applying 
confidence intervals or hypothesis tests to compare competing forecasts? 
Mon. Wea. Rev., 146 (6), 1685 - 1703, doi: 10.1175/MWR-D-17-0295.1.

• Gilleland, E. D. Muñoz-Esparza, and D. Turner (2023) “Competing forecast 
verification: Using the power-divergence statistic for testing the frequency of 
“better”.”  Accepted to Weather and Forecasting, doi: 10.1175/WAF-D-22-
0201.1.



Brief Review of Statistical Hypothesis Testing

Competing Forecast Verification Setting

• Want to know if model A is better than model B.
• Assume neither is better than the other (null hypothesis, denoted ℋ଴).
• Calculate a test statistic (e.g., RMSE, MAE, etc., I will call these loss functions).
• Determine how likely it is to observe a test statistic as extreme as the one observed above 

(typically using assumptions like independence and identically distributed data, normality, etc.).
• Is it likely that model A is the same as model B based on the test statistic?

– Yes!  Fail to reject ℋ଴

– No.  Reject ℋ଴

• We could be wrong in two ways (uncertainty):
– Type I error: Reject ℋ଴ when it is actually true (think convicting someone of murder when 

they didn’t really do it!)
• The size of a test is the probability of a type I error.

– Type II error: Fail to reject ℋ଴ when it is not true (the murderer goes free)
• The power of a test is the probability of detecting a true effect.

• A statistical test is only one piece of evidence!
• Cassie Kozyrkov has some very nice videos online that explain these concepts very well (e.g., 

using puppies).  Just do a web search for her name and something like p-values.



T-test

• Two-sample test statistic
• Denote the sample means of the 

loss function for models A and B 
஺ and ஻ by ஺ and ஻, 

respectively.

௡
஺ ஻ ஺ ஻

஺ ஻

• Paired test statistic
• Let ஺ ஻ , called 

the loss differential series, and 
denote its population mean by ௗ

and its sample mean by .

௡
ௗ

Need to be estimated from the data and each involves 

division by a term involving , and each estimate involves 

an assumption of temporally independent series.



Variance Inflation Factor

• Variance Inflation Factor (VIF)
• Multiply the estimated standard error by a factor, , to increase its 

value, where
௡ିଵ

௜ୀଵ

௜

where ௜ is the estimated correlation of the time series between all points 
in time separated by a lag of .
• This approach works well if the underlying time series follows an AR( ) 

process, but usually the simplifying assumption that is used in 
practice.

Wilks, D. S. (1997) doi: 10.1175/1520-0442(1997)010<0065:RHTFAF>2.0.CO;2
Zwiers and von Storch (1995) doi: 10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2



Hering-Genton (HG) Test

• Instead of inflating the variance, 
try to estimate it while accounting 
for the dependence directly

• Follows Diebold-Mariani
approach in using a weighted 
average of the the auto-
covariance function (ACF) over 
several lags, but instead fits a 
parametric model to the ACF.

A. S. Hering and M. G. Genton
(2011) doi: 
10.1198/TECH.2011.10136 

ACF for an iid N(0,1) series

ACF for a dependent series



Need to have a notion of likelihood

• Interested in the mean loss 
differential.

• Most common estimate for the 
mean is the sample mean given 
by

௧

௡

௧ୀଵ

• Suppose the true mean is ௗ and 
the standard deviation of the 
sample is . Then…

ௗ

ଶ

So, the standard error is given by



Need to have a notion of likelihood

• Need to know the shape of ’s 
probability distribution.

• Central limit theorem (CLT) 
applies to independent and 
identically distributed random 
variables (iid).

• That is, if ଵ ଶ ௡ are 
independent with probability 
distribution , then 

ଵ ௗ ଶ ௗ ௡ ௗ

ௗ

Two problems:
1. We know that ଵ ଶ ௡ are not 

independent!
2. We do not know , and therefore, 

, so it has to be estimated.

For 1, the CLT still applies but the 
estimate for needs to be adjusted 
as the effective sample size is smaller 
than we think it is (that is where the HG 
estimate comes in, and the VIF, etc.).

For 2, the -distribtution with 
degrees of freedom can be used 
instead, which is approximately standard 
normal for large enough .



Bootstrapping: when you don’t have a notion of 
likelihood

• Can be used to estimate the 
standard error directly, or

• To obtain a confidence interval 
with or without directly estimating 
the standard error

– Many such methods available
– See doi: 10.5065/D6WD3XJM, 

and references therein for a 
review.

• Most methods do not require any 
distributional assumption (though 
there are still other assumptions).

• IID bootstrap is most common
1. Let the true but unknown value 

of the test statistic or parameter 
of interest be denoted by .  For 
example, is ௗ in our setting.

2. Denote as the estimated 
parameter value for from the 
original data set (call it the 
bootstrap estimate of the test 
statistic or parameter of interest)

3. Take a sample with replacement 
from the data and estimate .  
Denote this estimate by ∗.

4. Repeat step 3 many times, say 
times, to obtain a sample 

ଵ
∗

஻
∗ of .

5. Estimate from the sample 
in step 4 or estimate CI’s.



Bootstrapping

IID bootstrap is not appropriate when data are temporally (or spatially) 
correlated.  The circular-block (CB) bootstrap can be used in its stead.

Instead of sampling with replacement from the original data, say ଵ ஺ଵ

஻ଵ ௡ ஺௡ ஻௡, sample with replacement from ଵ ௡, where ଵ

ଵ ଶ ௞ ଶ ଶ ଷ ௞ାଵ ℓ ℓ ℓା௞ିଵ ௡

௡ ଵ ௞ିଵ .



Bootstrapping

For example, suppose we observe: -0.1, 0.003, 1, -2, 0.3, 0.5, -0.2, and 
suppose we choose to sample blocks of length , then we would sample:

-0.1, 0.003, 1, -2, 0.3, 0.5, -0.2 𝒚𝟏 = −𝟎. 𝟏, 𝟎. 𝟎𝟎𝟑, 𝟏
𝒚𝟐 = 𝟎. 𝟎𝟎𝟑, 𝟏, −𝟐

𝒚𝟑 = 𝟏, −𝟐, 𝟎. 𝟑
𝒚𝟒 = −𝟐, 𝟎. 𝟑, 𝟎. 𝟓

𝒚𝟓 = 𝟎. 𝟑, 𝟎. 𝟓, −𝟎. 𝟐
𝒚𝟔 = 𝟎. 𝟓, −𝟎. 𝟐, −𝟎. 𝟏

𝒚𝟕 = −𝟎. 𝟐, −𝟎. 𝟏, 𝟎. 𝟎𝟎𝟑



Bootstrapping

If we are interested in a statistic, say ௡ (e.g., ௡ ௡), then we start with the 
paradigm that ௡ is a random variable that follows some distribution 
function, say .

Note that ௡ is based on data.  For example, ௡
ଵ

௡ ௧
௡
௧ୀଵ is based on 

ଵ ଶ ௡.

When we resample from the data (or however we sample) the resulting 
statistic, ௠

∗ , is based on the resampled data, which in our example would 
be ଵ

∗
ଶ
∗

௠
∗ .  Note that may or may not be the same as .  

௠
∗ is a random variable that follows a distribution, say ௡.



Bootstrapping

Bootstrapping works when…

If the law of ௡ tends weakly to a limit as , and the law of ௡
∗ tends 

weakly to the same limit law with probability one as (Bickel and 
Freedman 1981).



Simulation Experiment to test different hypothesis 
tests

Competing Forecast Verification Setting

• Simulate two time series of errors,  ஺ and ஻ , with 
– the same mean, ஺ ஻ , and with either
– the same variances, ஺

ଶ
஻
ଶ ଶ to empirically test for the size of various 

hypothesis tests, or 
– with ஻

ଶ
஺
ଶ to empirically test for the power of the tests.

• Apply different test procedures to test ଴ ஺ ஻ against ଵ ஺ ஻ for various 
loss functions, such as AE or SE.

– Note that although the raw error series are simulated to have mean zero, when 
testing for AE or SE loss, ଶ for all so that the MAE or RMSE 
will be positive valued. 

– Could test other alternative hypotheses, but here the focus is on the two-sided 
alternative.

• Repeat the above steps 1000 times.
– For empirical size (when ஺ ஻), find the number of times ଴ is (falsely) 

rejected and divide by 1000.  The result is the empirical size of the test.
– For empirical power, find the number of times ଴ is (correctly) rejected and 

divide by 1000.  The result is the empirical power of the test.



Testing the tests

Independence Case
𝜌 = 0, 𝜃 = 0



Testing the tests

Strong contemporaneous correlation, 
temporal independence

𝜌 = 0.9, 𝜃 = 0

No contemporaneous correlation, 
temporal dependence

𝜌 = 0, 𝜃 = 0.9



Testing the tests

Moderate contemporaneous correlation and temporal dependence case

𝜌 =
1

2
, 𝜃 =

1

2



Power for HG test
Sample Sizes
8    16    32     64    128 256 512



Testing the Frequency of “Better”

loss( Model A ) – loss( Model B )

Model A better

Model B better



2022 Denver Broncos

SEAEErrorScore

11-116-17

93316-9

11111-10

819-923-32

93-39-12

93-316-19

497-79-16

164421-17

497-710-17

366-616-22

16913-1310-23

11-19-10

366-628-34

819924-15

1,36937-3714-51

93-324-27

11.082087.3125-4.6875MeanRecord to date: 4 - 12

Loss functions

Root mean-
square error 
(RMSE)



Power-divergence Statistic

Modeling discrete multivariate data
• Model A is better than model B or model B is better (

categories) according to some loss function
• Let be the random variable where if model A is better, then 

and if not, .
• Then , where is the probability that , so is 

the probability that .
• Want to test ଴

ଵ

ଶ
meaning that model A and model B have the 

same frequency of being better than the other (i.e., neither model is 
better).

• More generally, the test is ଴ , where ଵ

ଶ
for our setting.



Power-divergence Statistic

ఒ
௜

௜

௜

ఒ௞

௜ୀଵ

where for our setting:

•
• ଵ ଶ is the estimate of from the data
• ଵ ଶ

ଵ

ଶ

ଵ

ଶ
is the vector of test parameters

• is a user-chosen value that yields different test statistics, but…
• asymptotically, they are all the same!
• Under certain assumptions that are not likely to be met with 

atmospheric data, ఒ
௞ିଵ
ଶ



Power-divergence Statistic

NotesDefinition𝝀Statistic Name

Neyman (1949)
𝑁ଶ = ෍

𝑝̂௜ − 𝑞௜

𝑝̂௜

௞

௜ୀଵ

𝜆 = −2Neyman Modified 𝑋ଶ

Kullback and Leibler (1951)
𝐾𝐿 = 2 ෍ 𝑞௜ log

𝑞௜

𝑝̂௜

௞

௜ୀଵ

𝜆 = −1Kullback-Leibler

Freeman and Tukey (1950)
𝐹ଶ = 4 ෍ 𝑝̂௜ − 𝑞௜

ଶ
௞

௜ୀଵ

𝜆 = −
1

2

Freeman-Tukey

Optimal for testing against certain 
nonlocal alternatives with some near-
zero probabilities.  Neyman (1949)

𝐺ଶ = 2 ෍ 𝑝̂௜ log
𝑝̂௜

𝑞௜

௞

௜ୀଵ

𝜆 = 0Loglikelihood-ratio

A good choice when there is no 
knowledge of possible alternative 
models for both small and large sample 
sizes.  Cressie and Read (1984)

𝐶𝑅 =
9

5
෍ 𝑝̂௜

𝑝̂௜

𝑞௜

ଶ/ଷ

− 1

௞

௜ୀଵ

𝜆 =
2

3

Cressie-Read

Optimal for the equiprobable hypothesis 
against certain local alternatives in large 
sparse tables.  Pearson (1900)

𝑋ଶ = ෍
𝑝̂௜ − 𝑞௜

ଶ

𝑞௜

௞

௜ୀଵ

𝜆 = 1Pearson’s 𝑋ଶ

Above table is taken from Table 1 in Gilleland et al., (accepted to WAF). And is a summary of some information taken from: 
Read and Cressie (1988). 



Power-divergence Statistic

Empirical Size 
testing (using 5%) 
with simulations as 
in Hering and 
Genton (2011)



Power-divergence Statistic

Empirical Power 
testing (using 5%) 
with simulations as 
in Hering and 
Genton (2011)



Test Cases: Turbulence

Two versions of 6-h turbulence 
forecasts called the Graphical 
Turbulence Guidance (GTG) 
algorithm for eddy dissipation rate 
(EDR, mଶ/ଷsିଵ , Sharman and 
Pearson 2017; Muñoz-Esparza and 
Sharman 2018; Muñoz-Esparza et 
al. 2020).

These turbulence forecasts use v. 3 
of the High-Resolution Rapid 
Refresh (HRRR, Dowell et al. 2022; 
James et al. 2022) as the input NWP 
information for the 1 June 2018 to 
30 September 2019 period.

Competing versions are: simple 
regression (HGTG, Sharman and 
Pearson 2017) and a machine-
learning model based on regression 
trees (ML GTG, Muñoz-Esparza et 
al. 2020).



Test Cases: HRRR Temperature and Wind Speed

12-h forecasts of 2-m temperature 
(deg. C) extracted from the surface 
application of the Model Analysis 
Tool Suite (MATS, Turner et al. 
2020).  Comparing HRRR v. 3 and 
v. 4.

Matched observations are used  with 
model forecast data from 1 August 
2019 to 1 December 2020 when v. 3 
of HRRR was operational at NCEP 
and v. 4 frozen as part of the 
evaluation phase.

Also looked at 10-m wind speed 
(m/s), which produces similar 
diagnostic plots as these, so not 
shown for brevity.



Test Cases: Turbulence

𝟓21𝟐/𝟑𝟏/𝟐𝟎−𝟏/𝟐−𝟏−𝟐−𝟓𝝀

ME

0.340.340.340.340.340.340.340.340.340.34Power div.

0.560.560.560.560.560.560.560.560.560.56p-value

𝟓21𝟐/𝟑𝟏/𝟐𝟎−𝟏/𝟐−𝟏−𝟐−𝟓𝝀

ME

11.4411.2411.2411.2511.2511.2711.3011.3411.4511.99Power div.

0.000.000.000.000.000.000.000.000.000.00p-value

Moderate turbulence conditions: 0.1 mଶ/ଷsିଵ< EDR < 0.3mଶ/ଷsିଵ

Severe turbulence conditions: EDR > 0.3mଶ/ଷsିଵ, which is about 0.1% of the total sample.



Test Cases: HRRR Temperature and Wind Speed

12-h forecasts of 2-m temperature (deg. C) 12-h forecasts of 10-m wind speed (m/s)

The Hering-Genton test 
(Hering and Genton 2011) is 
a t-test on the mean loss 
differential where the 
standard error is estimated in 
a way that accounts for 
temporal dependence, and 
the test is robust to 
contemporaneous correlation.  
It is a test on the intensity 
difference in error rather than 
the frequency of being better.



Test Cases: HRRR Temperature and Wind Speed

Using 𝜆 = 2/3, ℋ଴ is 
rejected at all time points.

For large negative 𝜆 the 
test fails to reject ℋ଴ , 
where all of the choices 
of 𝜆 above −1, the test 
rejects ℋ଴.

Results based on a 5%-
level test, but p-values 
estimated to be zero.

For all choices of 𝜆
applied previously, the 
power-divergence rejects 
ℋ଴ at all times except at 
9 and 12 UTC

(deg. C)

(m/s)



Extreme Values

Image citation: http://n2t.net/ark:/85065/d72v2d5b



Maximum



Maximum
Theoretical justification for the GEV( ) as the limiting distribution for maxima 
over long blocks of time (think annual).  Analogous results for excesses over a 
high threshold.  Combine them all 

ା

ି
ଵ
క



Estimation
Can use maximum-likelihood (ML), L-moments (and other moment-type 
methods), Bayesian and various non-parametric methods.  MLE is perhaps the 
most commonly used.

MLE issues with EVD’s:
• Regularity assumptions for the MLE to follow a normal distribution are not 

always met so that the assumptions for using parametric CI’s for parameters 
and/or return levels may not be valid.

• Bootstrapping is more complicated because of the slow convergence to the 
error distribution ( bootstrap is appropriate for heavy-tail case).

• Profile-likelihood and test-inversion bootstrap are best choices, but both can 
be very difficult to implement and automate.



Estimation
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