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Introduction 
There are many challenges to evaluating predictability when faced with large spatial data sets.  
First, one must obtain a verification data set that is, ideally, independent of the prediction set, and 
at the same time and scale.  For the latter, it is seldom the case that they are at the same time and 
scale, and this representativeness uncertainty should be considered, though seldom are (cf. 
Tustison et al. 2001; Mittermaier 2018).  A related topic concerns uncertainty in the observations, 
one of whose sources is representativeness error (Ferro 2017), which again is rarely considered.   

Because observations are often not found on the same grid (e.g., they may be from point sources, 
radar at a di erent resolution, etc.), the usual approach is to create an “analysis” that is often found 
via the same prediction model that made the forecast, just with a much shorter lead time.  
Subsequently, the independence criterion is often not met.  Neither this topic nor the issue of 
representativeness and/or observational error are discussed further in this poster, but they should 
be considered in any verification study. 

The aim of this treatment is to address many of the issues that arise under the condition that a 
verification field is available at the same time and on the same grid as the prediction.  As weather 
forecasts went to higher resolution grids, it was found that they often had worse verification results 
than did their coarser model counterparts.  The reasons, however, had less to do with any 
superiority of the coarser model, and more to do with the verification tools, such as root-mean 
square error (RMSE) or correlation, as well as the myriad contingency-table based measures (Mass 
et al. 2002).  The primary reasons for this paradox are twofold.  One is the so-called “double-
penalty” and the other is an over accumulation of errors in the higher resolution grid resulting from 



many more chances to have errors.  The double penalty results from a single error that is tallied 
twice rather than once.  For example, a storm feature may be predicted perfectly in terms of its size, 
spatial shape, and intensity values, but is displaced spatially so that it does not overlap with the 
observation (cf. Figure 1 left).  Most traditional measures will tally a “miss” everywhere the green 
oval (marked with an “O”) is in the two top rows of the figure, and then tally a false alarm 
everywhere there is a red oval (marked with an “F”), though the only error is a spatial displacement. 

 

Figure 1: (Left) Graphical depiction of the double-penalty problem and the need for diagnostic information.  Here, 
the green oval is the observed “storm” and the red represents various forecasts.  Several traditional verification 
measures, such as RMSE and correlation, are identical for the two top comparisons and the one in the second row 
and second column.  Some favor the bottom panel because it is the only one where the prediction overlaps with 
the observation.   (Right) Depiction showing the need for user-specific diagnostic evaluations.  For one user, the 
prediction is very bad (missed the watershed) and for the other it is very good (flight-path change needed).  Figures 
used by permission of Barbara G. Brown. 

Of course, a single summary measure like RMSE can only provide a small amount of information.  It 
cannot diagnose particular problems with a prediction.  The right side of Figure 1 illustrates the 
need not only for diagnostic information but also that the information may di er depending on the 
specific user needs. 

Because of relevant methodologies developed in other areas, such as computer vision, image 
analysis, and spatial statistics, a large number of new methods were introduced over a fairly short 
amount of time; in part fostered by the spatial forecast verification Inter-Comparison Project (ICP; 
https://projects.ral.ucar.edu/icp).  Early reviews of the various methods can be found in Gilleland et 
al. (2009), where those methods were found to generally be categorized as being in one of two main 
categories, filter v. displacement.  Each of which can itself be categorized into two main categories.  
The filter methods fall into either smoothing or band-pass methods, and the displacement methods 
were categorized as either feature-based or deformation.  In this poster, some highlights of the 
latter categories of displacement methods are given, in part to illustrate additional challenges with 
spatial prediction evaluation. 

Notation 
In what follows, let 𝑍(𝒔) be the verification at grid point 𝒔 = (𝑥, 𝑦) ∈ 𝒟 where 𝒟 represents the 
entire grid domain.  Similarly, let  𝑍(𝒔) be the prediction at grid point 𝒔.  In this treatment, 𝑍(𝒔) and 
𝑍(𝒔) will be quantitative precipitation (mmh-1) but most of the methods apply to a much wider range 



of variables.  The shortest distance between two grid points 𝒔  and 𝒔  is denoted by 𝑑(𝒔 , 𝒔 ) and is 
generally assumed to be Euclidean distance.  The shortest distance between a grid point 𝒔 and a set 
of grid points, say 𝒜, is denoted by 𝑑(𝒔, 𝒜), and the grid giving 𝑑(𝒔, 𝒜) for every point 𝒔 ∈ 𝒟 is 
called a distance map.  There exist fast algorithms for calculating the distance map e iciently. 

Deformation Methods 
In principle, the issues about double penalties and over accumulation of errors can be directly 
modeled in the context of image warping (cf. Sampson and Guttorp 1992; Dryden and Mardia 1998; 
Ho man et al. 1995; Nehrkorn et al. 2003; Gilleland et al. 2010b,c as labeled in G22; Gilleland 
2013).  The model says that the verification at grid point 𝒔 is the prediction at possibly some other 
grid point 𝒔 = 𝑊(𝒔) plus additional (intensity) error.  Namely, 

𝑍(𝒔) = 𝑍 𝑊(𝒔) + 𝜀(𝒔) , 

where 𝜀(𝒔) is the intensity error and 𝑊(𝒔) = 𝑊 (𝒔), 𝑊 (𝒔)  so that the 𝑥- and 𝑦-coordinates are 

each modeled independently according to the warping function.  There are many warping functions 
that can be chosen.  For example, the pair-of-thin-plate-splines (POTPS) warping function for the 𝑥-
coordinate (and similarly for the 𝑦-coordinate) is given by 

𝑊 (𝒔) = 𝑎 , + 𝑎 , ⋅ 𝑥 + 𝑎 , ⋅ 𝑦 + 𝑏 , ⋅ 𝑈 𝑑 𝒑 , , 𝒔 , 

where the constants 𝑎 , , 𝑎 , ,  and 𝑎 ,  are linear coe icients representing a ine transformations, 
and the coe icients 𝑏 ,  represent non-linear transformations governed by the thin-plate spline 𝑈(⋅) 
that is a function of the shortest distance between a set of control points, 𝒑 , , and 𝒔, where 𝑈(𝑟) =

𝑟 log 𝑟.  The entire deformation is controlled by the subset of points, 𝒑 , .  The fewer the control 
points, the less complicated is the deformation, and the more e icient the algorithm.  To obtain a 
better match, one would need more control points. 

 

Figure 2: Example of image warping applied to photographic images.  Left is Johan Lindström and right is Finn 
Lindgren.  In the middle is Johan’s image warped so that his facial features are more aligned with those of Finn’s.  
The black dots show the control points used and note that the entire deformation is based solely on these points.  
Here, Finn is the 0-energy field and Johan is the 1-energy field.  Image provided by Johan Lindström. 

Figure 2 shows an example of image warping applied to photographic images and Figure 3 shows 
an example of image warping applied to a contrived verification/prediction pair based on one of the 
cases from Figure 1.  In this case, the prediction is warped to better match the verification so that 



the verification is called the 0-energy field because it is not warped, and the prediction is the 1-
enregy field because it is warped.  The 1-energy field maintains the intensities but they are 
displaced spatially to be better aligned with the 0-energy intensities.  Note that the 1-energy field in 
this example is a re-scaling of the verification field, but a warping that involves a large rotation also 
provides a good match; demonstrating one issue with the image-warping approach in that it can be 
di icult to find the “best” warp as there are numerous di erent ways to warp the points to provide a 
good match. 

Once a good warped image is found, traditional verification measures, such as RMSE, can be 
applied without concern about double penalties.  The percent reduction in RMSE (or other 
measure) before and after warping can also be useful information.  One can also look at the 
coe icients 𝑎 , , 𝑎 , ,  and 𝑎 , , as well as, 𝑎 , , 𝑎 , ,  and 𝑎 , , in order to glean the amount of 
a ine displacement in order to make statements like, on average the prediction is too far east (as in 
the example of Figure 3).  A summary of the non-linear part in the case of POTPS warping naturally 
falls out as something called the bending energy.   

 

Figure 3: An example of image warping for a contrived prediction, labeled the 1-energy field, of the verification, 
labeled the 0-energy field.  In this case, the prediction is a re-scaling of the verification, but it is approximately a 
rotation.  There is not a unique image warp that provides a reasonable result.  The left three columns depict the re-
scaling warp and those on the right depict a rotation warp. The latter has a higher overall error, but still represents a 
good match to the verification.  In the bottom, the two types of warp mappings are displayed where the control 
points are numbered so that 1 maps to 1, 2 to 2, etc.  This example uses four control points that deform the entire 
image. 

Assimilating all of this information, however, can be challenging unless a specific user has a 
preference for one type of error over another.  For example, suppose the reduction in the RMSE is 



very high for one prediction, say  𝑍 (𝒔) and very low for another, say 𝑍 (𝒔).  However, the amount of 
warping for 𝑍 (𝒔) is also considerably less than that for 𝑍 (𝒔).  Which prediction is better?  
Consider further the lack of uniqueness in finding a good fit, or the di iculty in finding a good fit for 
some cases, and the question becomes even murkier. 

For example, Figure 4 shows a contrived comparison from Gilleland et al. (2022) that demonstrates 
the di iculty in summarizing the results of image warping and other methods.  Taking C6 to be the 
verification and C1 the prediction, C1 missed the two circles from C6 completely (no overlap) and 
has one circle that gives a false alarm.  First, perhaps it is best in this case to count C6 circles as 
misses and the one from C1 as a false alarm (perhaps that is the true error).  There is no way to tell, 
but certainly the image warping can be constrained to not warp too much.   

 

Figure 4: The contrived cases C6 v. C1 from Gilleland et al. (2020).  Warping could be applied to move C1 up to 
match the top circle in C6 or down to match the lower circle (but maybe it is a true set of misses and false alarms!).  
Only one control point would be necessary for either of these deformations (though three are shown), but with more 
control points, the C1 circle could be stretch to overlap with both circles in C6.  With even more (not shown) it could 
be stretched to overlap both circles, and squeezed to reduce the false alarms (taking C1 as the prediction). 

If it is decided to warp C1, how should it be done?  The figure illustrates three possibilities.  
Translate C1 north to match one circle, or south to match the other.  Or, perhaps using more control 
points, stretch C1 to overlap with both.  With more control points, it could also be squeezed until an 
almost perfect match is attained. 

Feature-based applications 
The main di erence between feature-based and field-deformation approaches, such as image 
warping, is that feature-based methods are aimed at individual “features” within a field, whereas 
the latter morphs the entire field.  In some cases, such as the contiguous rain area (CRA; Ebert and 
McBride 2000) method, apply field deformation to the individual features and then assess 
performance.  In the case of CRA, the RMSE is decomposed into di erent sources, such as shift 
and volume, but is still applied to the entire field.  Other approaches, such as the composite 
(Nachamkin et al. 2005) and structure-amplitude-location (Wernli et al. 2008) methods, use the 
individual feature elements to make distributional summaries about the prediction performance.  
Davis et al. (2009) merge (within each of the verification and prediction fields) and match the 
feature elements (across fields) in order to make various comparisons, including using these 
comparisons to employ traditional contingency-table measures. 



The first challenge in a feature-based approach is to identify features in each field.  Generally, this 
procedure needs to be performed automatically, which may result in features that are not 
meteorologically meaningful.  While some utilize other meteorological information to identify 
features (such as in Wernli et al. 2008), the features are generally obtained by first identifying what 
are known in the computer-vision literature as connected components, or sometimes called 
isolated clusters (e.g., AghaKouchak et al. 2011).  In most cases, the field is first smoothed, though 
this step is not necessary, it generally results in far fewer features that are very small in size; even 
when the field is smoothed, subsequent analyses may (or may not) be applied to the original 
underlying field using the smooth feature as a kind of mask.  A threshold is then applied to the field 
in order to create a binary field, where typically values below the threshold are set to zero and 
everywhere else to one.  Computer algorithms then determine the connected components, which 
include sets of one-valued grid points that are all connected to each other (cf. Figure 5).  In some 
cases, as mentioned above, these individual blobs of points that are close together (but not 
touching) may subsequently be merged by some type of criterion analogous to a cluster analysis 
(e.g., Davis et al. 2006a,b as labeled in G22; Gilleland et al. 2008; Marzban and Sandgathe 2008). 

 

Figure 5: Two examples of features identified by first smoothing the respective fields, thresholding, and then 
identifying connected components.  The top shows the original fields, followed by the binary fields.  The colors in 
the bottom figure represent identified features.  Here, the features have not been merged or matched.  That is the 
next challenge! 



Once the features are identified, one might compare summaries of the features across fields 
without directly comparing individual features, as in the distributional approaches mentioned 
above.  In other cases, the next challenge is to determine the best matching (or not) of features 
across fields.  Again, this process can be rather challenging, and often di erent methods result in 
di erent comparisons.  In fact, many methods involve tunable parameters where results can be 
highly sensitive to their choices.  Davis et al. 2006a,b employ a fuzzy logic procedure based on 
various feature properties, such as centroid, axis angle (if the feature is long and skinny), ratio of the 
convex hull to the area, etc.  Gilleland et al. (2008) employ a dissimilarity measure, called 
Baddeley’s Δ, described in further detail below in a type of cluster analysis, and the CRA method 
uses a simple proximity approach. 

 

Figure 6: Example of two individual features and some properties that might be of interest.  The top two panels 
show the features on the original field, and the bottom two are zoomed in to the features.  The outline around the 
features is the convex hull.  The ratio of this value to the area tells how concave or convex a shape is.  For example, 
if the feature is a circle, then the ratio would be one because there would be no white space.  The more C-shaped 
the feature is, the lower the ratio.  The centroid of the featue is marked by the intersection of the features axis lines 
(the axis lines are not relevant if the feature is, for example, a circle).  The angle of the major axis is the orientation 
angle. 

The challenge is to summarize the overall performance based on the merged and matched 
features.  In some cases, the summary measure used in the cluster-analysis process may double 
as the overall performance measure, such as the maximum interest value used by Davis et al. 
(2006a,b).  The next section deals with dissimilarity measures that may be used in this approach, 
and discusses the many challenges associated with them. 

Dissimilarity Measures 
The task of comparing two features can be summarized as finding a measure 𝑑(𝒜, ℬ) for two sets 
of one-valued grid points, 𝒜 and ℬ.  Determining 𝑑(𝒔 , 𝒔 ) and 𝑑(𝒔, 𝒜) are relatively 
straightforward.  While some options exist for 𝑑(𝒔, 𝒜), it makes sense to use the shortest distance 
to the nearest point in the set 𝒜 of one-value grid points, and is what is meant, herein, by 𝑑(𝒔, 𝒜).  
For this section, it is assumed that the individual features are on an otherwise empty field, as some 
measures rely on the entire domain, 𝒟.  Note that these methods are also useful if applied to a 
binarized version of the original field, without identifying individual features. 



  

Figure 7: Left: Finding the distance between a point 𝒔𝟎 and a set of points, 𝓐, is relatively straightforward.  Usually, 
the shortest distance to the nearest point in the set is used, and is illustrated here.  The angle, 𝜽, is the bearing of 
the point 𝒔𝟎 to the set 𝓐 relative to north.  Right: comparing two sets of points, 𝒅(𝓐, 𝓑), is a much more di icult 
task.  The dashed line shows the centroid distance between the two sets, but many other possibilities exist. 

One of the first dissimilarity measures to be used in spatial forecast verification, as it is often 
called, is the centroid distance (cf. Davis et al. 2006a,b).  This measure gives the distance between 
two features’ centroids.  Figure 8 illustrates the drawbacks of this measure, but it should be noted 
that there are many situations where this measure is appropriate, as well.  All of the cases in the left 
column give a perfect match according to this measure despite some very large di erences.  On the 
other hand, the cases on the left column are less than perfect matches despite that human 
observers might suggest that they are better. 

 

Figure 8: Examples illustrating the drawbacks of the centroid distance as a dissimilarity measure.  The purple set of 
grid points is compared against the gold set. 

It is relatively easy to find cases where the centroid distance might not be very useful, but every 
dissimilarity measure has its flaws, and is the subject of Gilleland et al. (2020).  Nevertheless, some 
are very useful.  When applied to an entire field without identifying features, they can make for very 



simple, straightforward summaries of performance that while not comprehensive, are easy to 
digest and understand; and in most cases can be used operationally.  They do rely on binary fields, 
so they are (in most cases) about the spatial alignment of intensities rather than about the 
intensities themselves.  Therefore, they should be used in conjunction with other measures such as 
frequency bias, comparisons of mean intensities and their standard errors, etc. 

The distance-map based dissimilarity measures (cf. Dubuisson and Jain 1994) are of particular 
importance because they can be calculated e iciently thanks to fast computational algorithms for 
finding distance maps.  One of the earliest of these methods is the Hausdor  method, which is 
given by: 

𝐻(𝒜, ℬ) = max max
𝒔∈ℬ

𝑑(𝒔, 𝒜) , max
𝒔∈𝒜

𝑑(𝒔, ℬ) . 

Note that 𝐻 gives the maximum of shortest distances of all of the points in each set to the nearest 
point in the other (i.e., look closely at the subscripts of the maxima inside the outer maximum).  The 
usual criticism of this measure is that it can be highly sensitive to even a small change in one or 
both sets. 

  

Figure 9: Illustration of the sensitivity of the Hausdor  metric to a small change in one or both of B.  When the small 
disconnected part of set A is removed, the value of the Hausdor  metric changes drastically.  The length of the 
dashed line in each figure is the Hausdor  metric. 

One modification aimed at mitigating this e ect is Baddeley’s Δ (1992a,b as labeled in G22).  This 
measure is given by 

Δ , (𝒜, ℬ) =
1

|𝒟|
𝜔 𝑑(𝒔, 𝒜) − 𝜔 𝑑(𝒔, ℬ)

𝒔∈𝒟

/

, 

where |𝒟| is the size of the domain, the summation is over every point in 𝒟, 𝜔(⋅) is a special type of 
function but is usually chosen to be 𝜔(𝑡) = min(𝑡, 𝑐) for a chosen constant 𝑐 called the cuto , and 
𝑝 is a user-chosen parameter.  Usually, 𝑝 = 2 is chosen, which gives the Euclidean norm of the 
di erences in distance maps (possibly after filtering out distances larger than a certain amount 
with the cuto  value).  If 𝑝 = 1, the result is simply the mean of the di erence in distance maps, 
and in the limit as 𝑝 → ∞, the Hausdor  distance falls out.  Figure 10 illustrates how Δ is calculated 
from the distance maps.  First, the individual distance maps for each field are found (top row), their 
di erence is then found (bottom row left without a cuto  and right with a cuto ).  Then, the 𝐿  norm 
of the resulting di erence is obtained to give Δ. 



 

 

Figure 10: Illustration of the use of distance maps to calculate Baddeley’s 𝚫.  Top row shows the distance maps for 
two binary fields.  Bottom left shows the di erence between the two images in the top row.  Bottom right is the 
same except after having applied a cuto  value. 

A reason for the cuto  value is that because the norm is taken over the entire domain, the measure 
is susceptible to boundary e ects.  In particular, it may give a di erent result for two identical 
features separated by the same amount, depending on whether they are close to a boundary or not.  
The di erence is usually small, but nevertheless, discouraging. 

A particularly useful measure is the mean-error distance (MED).  It is given by: 

𝑀(𝒜, ℬ) =
1

|ℬ|
𝑑(𝒔, 𝒜)

𝒔∈ℬ

. 

It can be thought of as a conditional measure of one set given the other.  The main arguments 
against its use in other topic areas is its lack of symmetry in that 𝑀(𝒜, ℬ) ≠ 𝑀(ℬ, 𝒜).  However, as 
demonstrated in Gilleland (2017), this asymmetry can be exploited to glean information about 
misses v. false alarms, thereby making the measure very valuable. 

Gilleland et al. (2020) used various contrived cases, such as those in Figure 4 to test the behavior of 
these and other spatial verification methods; those primarily aimed at spatial alignment errors, 
such as the dissimilarity measures.  A summary of those findings is provided in Table 1.  The testing 
can be grouped into several categories of behavior.  The first considers pathological cases that arise 
rather often in meteorology.  Namely, when nothing is predicted (e.g., no rain), as well as what 
happens when only one or a few grid points have values of one and everywhere else is zero.  None 
of the existing methods at the time handled these cases, meaning that special handling is 
necessary for these situations. 



Table 1: Summary of the findings in Gilleland et al. (2020).  MED is mean-error distance and FoM is Pratt’s Figure of 
Merit (not discussed here). 

 

The next category involves positional e ects of features within the field.  It was already mentioned 
earlier that Δ is sensitive to this issue.  Frequency bias has to do with whether a prediction can be 
hedged by over predicting a phenomenon in order to achieve a better score.  Only the centroid 
distance, Hausdor  distance and MED were immune (in the case of MED, it is immune only through 
the asymmetrical property when looking at both directions, 𝑀(𝒜, ℬ) and 𝑀(ℬ, 𝒜)). 

The next test category is similar to the pathological cases.  It is specifically intended for the case 
when a user is interested in high-intensity storms that are small in spatial extent, as many 
thunderstorms are.  In these cases, a high threshold for creating the binary fields will yield very 
small features that are very important to predict well.  The Hausdor  distance excels at this test, 
and the MED is generally useful in this setting, but other measures fail to produce here.  Lastly is the 
idea of a partial perfect match, and whether the measure rewards or penalizes for such a scenario.  
Δ and MED are the only measures, here, that reward a prediction for this scenario.   

In order to find a measure that performs better under some of the scenarios, such as the 
pathological cases, that were not handled well by existing methods, Gilleland (2021) proposed two 
new measures.  The first is given by: 

√𝐺(𝒜, ℬ) = 𝑦 ⋅ 𝑦
/

, 

where 𝑦 = 𝑛𝒜 + 𝑛ℬ − 2𝑛𝒜ℬ with 𝑛𝒜 representing the number of grid points in the set 𝒜, etc. (i.e., 
the symmetric di erence) and 𝑦 = 𝑀(𝒜, ℬ) ⋅ 𝑛ℬ + 𝑀(ℬ, 𝒜) ⋅ 𝑛𝒜, a weighted sum of the MED in 
both directions.  The symmetric di erence in the first term penalizes for lack of overlap between the 
two sets of grid points while the second term utilizes the utility of the MED and its information about 
both misses and false alarms.  The square root in the above equation is added here in order to give 
it the same units (grid points) as the other measures discussed here, such as the Hausdor  
distance. 

The second measure proposed in Gilleland (2021) was created to provide an index from zero to one 
for ease of interpretability.  It is similar to √𝐺 in that they both make use of the same product 𝑦 ⋅ 𝑦 .  
This product is generally a very large number, so it needs to be scaled down.  The former is scaled 
down by taking the cubed root (and here also the square root).  The latter uses a user-chosen 
parameter 𝛽 and is given by: 



𝐺 (𝒜, ℬ) = max 1 −
𝑦 ⋅ 𝑦

𝛽
. 

 

Table 2 shows the results of these new measures applied to the tests of Gilleland et al. (2020).  
Clearly, they perform well, noting that they penalize for a partially perfect match rather than reward 
for them.  𝐺 is not useful for rare event predictions, whle 𝐺  is useful provided 𝛽 is chosen in such a 
way as to inform about them. 

Table 2: The Gilleland et al. (2020) tests applied to the measures proposed in Gilleland (2021). 
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