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Statistical Hypothesis Testing

This talk covers the recently published paper:

Gilleland, E. D. Munoz-Esparza, and D. Turner (2023) “Competing forecast
verification: Using the power-divergence statistic for testing the frequency of
“better”. Weather and Forecasting, 38 (9), 1539 — 1552, doi: 10.1175/WAF-D-22-
0201.1.
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Power-divergence Statistic

Modeling discrete multivariate data

Model A is better than model B or model B is better (k = 2
categories) according to some loss function

Let X be the random variable where if model A is better, then X = 1
and if not, X = 0.

Then X ~ Binom(p), where p is the probabilitythat X =1,s01—p is
the probability that X = 0.

Want to test Hy:p = % meaning that model A and model B have the

same frequency of being better than the other (i.e., neither model is
better).

More generally, the test is Hy:p = q, where g = % here.



Power-divergence Statistic
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where for our setting:

=2
e p=(py, D) = (H,1—p)is the estimate of p from the data

) &

e q=(9,,9,) =(q1—q) = G%) is the vector of test parameters

« Ais a user-chosen value that yields different test statistics, but...

« asymptotically, they are all the same!

* Under certain assumptions that are not likely to be met with
atmospheric data, I*(p: q) ~ x2_,



Power-divergence Statistic

Neyman Modified X2 Neyman (1949)

Kullback-Leibler A=-1 <q> Kullback and Leibler (1951)
l

Freeman-Tukey 1 Freeman and Tukey (1950)

Loglikelihood-ratio A=0
nonlocal alternatives with some near-

A_) Optimal for testing against certain
zero probabilities. Neyman (1949)

Cressie-Read
knowledge of possible alternative
models for both small and large sample
sizes. Cressie and Read (1984)

[<ﬁ_>2/3 ] A good choice when there is no
l
; =]

2 ( 4;)2 Optimal for the equiprobable hypothesis
X? = Z ; against certain local alternatives in large
i=1 9 sparse tables. Pearson (1900)

Pearson’s X2 A=1

Above table is taken from Table 1 in Gilleland et al., (accepted to WAF). And is a summary of some information taken from:
Read and Cressie (1988).



Simulation Experiment to test different hypothesis
tests

Competing Forecast Verification Setting

* Simulate two time series of errors, ¢,(t) and e5(t), with
— the same mean, u, = ug = 0, and with either
— the same variances, o; = o4 = o2 to empirically test for the size of various
hypothesis tests, or
— with 6% > ¢ to empirically test for the power of the tests.
*  Apply power-divergence test to test H,: g4 = qg = 1/2 against H;:q4 # qp-
— Could test other alternative hypotheses, but here the focus is on the two-sided
alternative.
* Repeat the above steps 1000 times.
— For empirical size (when o, = o3), find the number of times H, is (falsely)
rejected and divide by 1000. The result is the empirical size of the test.
— For empirical power, find the number of times H,, is (correctly) rejected and
divide by 1000. The result is the empirical power of the test.
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Power-divergence Statistic
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Test Cases: HRRR Temperature and Wind Speed
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Z-m temperature loss ditfferential

(a) loss differential ACF
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(b) loss differential PACF
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12-h forecasts of 2-m temperature
(deg. C) extracted from the surface
application of the Model Analysis
Tool Suite (MATS, Turner et al.
2020). Comparing HRRR v. 3 and
V. 4.

Matched observations are used with
model forecast data from 1 August
2019 to 1 December 2020 when v. 3
of HRRR was operational at NCEP
and v. 4 frozen as part of the
evaluation phase.

Also looked at 10-m wind speed
(m/s), which produces similar
diagnostic plots as these, so not
shown for brevity.
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Test Cases: HRRR Temperature and Wind Speed

12-h forecasts of 2-m temperature (deg. C)
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The Hering-Genton test
(Hering and Genton 2011) is
a t-test on the mean loss
differential where the
standard error is estimated in
a way that accounts for
temporal dependence, and
the test is robust to
contemporaneous correlation.
It is a test on the intensity
difference in error rather than
the frequency of being better.



Test Cases: Turbulence

Moderate turbulence conditions: 0.1 m?/3s~1< EDR < 0.3m?/3s™1
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ME

Power div. 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

p-value 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

Severe turbulence conditions: EDR > 0.3m?/3s~1, which is about 0.1% of the total sample.
L 2 [zl =[en szt [& |5
ME

Powerdiv. 1199 1145 11.34 1130 11.27 1125 11.25 11.24 11.24 11.44

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o0.00



Test Cases: HRRR Temperature and Wind Speed

For all choices of 1

applied previously, the
power-divergence rejects —»
H, at all times except at
9and 12 UTC

Using A =2/3, H, is
rejected at all time points.

For large negative A the

test fails to reject Hy, ,

where all of the choices —»
of A above —1, the test
rejects H,.

Results based on a 5%-
level test, but p-values
estimated to be zero.
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