Testing for the frequency of "better"

Eric Gilleland

Research Applications Laboratory National Center for Atmospheric Research

38th Session of the Working Group on Numerical Experimentation (WGNE-38; 27 November – 2 December 2023)

28 November 2023

NCAR | RESEARCH APPLICATIONS

Developmental Testbed Center

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Statistical Hypothesis Testing

This talk covers the recently published paper:

Gilleland, E. D. Muñoz-Esparza, and D. Turner (2023) "Competing forecast verification: Using the power-divergence statistic for testing the frequency of "better". *Weather and Forecasting*, **38** (9), 1539 – 1552, doi: <u>10.1175/WAF-D-22-0201.1</u>.

Loss functions

2022 Denver Broncos

Score	Error	AE	SE
16-17	-1	1	1
16-9	3	3	9
11-10	1	1	1
23-32	-9	9	81
9-12	-3	3	9
16-19	-3	3	9
9-16	-7	7	49
21-17	4	4	16
10-17	-7	7	49
16-22	-6	6	36
10-23	-13	13	169
9-10	-1	1	1
28-34	-6	6	36
24-15	9	9	81
14-51	-37	37	1,369
24-27	-3	3	9
Mean	-4.6875	7.3125	11.08208

Modeling discrete multivariate data

- Model A is better than model B or model B is better (k = 2 categories) according to some loss function
- Let X be the random variable where if model A is better, then X = 1 and if not, X = 0.
- Then *X* ~ *Binom*(*p*), where *p* is the probability that *X* = 1, so 1 − *p* is the probability that *X* = 0.
- Want to test $\mathcal{H}_0: p = \frac{1}{2}$ meaning that model A and model B have the same frequency of being better than the other (i.e., neither model is better).
- More generally, the test is $\mathcal{H}_0: p = q$, where $q = \frac{1}{2}$ here.

$$I^{\lambda}(\widehat{\boldsymbol{p}};\boldsymbol{q}) = \frac{1}{\lambda(\lambda+1)} \sum_{i=1}^{k} \widehat{p}_{i} \left[\left(\frac{\widehat{p}_{i}}{q_{i}} \right)^{\lambda} - 1 \right]$$

where for our setting:

- *k* = 2
- $\hat{p} = (\hat{p}_1, \hat{p}_2) = (\hat{p}, 1 \hat{p})$ is the estimate of p from the data
- $q = (q_1, q_2) = (q, 1 q) = \left(\frac{1}{2}, \frac{1}{2}\right)$ is the vector of test parameters
- λ is a user-chosen value that yields different test statistics, but...
- asymptotically, they are all the same!
- Under certain assumptions that are not likely to be met with atmospheric data, $I^{\lambda}(\hat{p}:q) \sim \chi^2_{k-1}$

Statistic Name	λ	Definition	Notes
Neyman Modified X ²	$\lambda = -2$	$N^2 = \sum_{i=1}^k \frac{\hat{p}_i - q_i}{\hat{p}_i}$	Neyman (1949)
Kullback-Leibler	$\lambda = -1$	$KL = 2\sum_{i=1}^{k} q_i \log\left(\frac{q_i}{\hat{p}_i}\right)$	Kullback and Leibler (1951)
Freeman-Tukey	$\lambda = -\frac{1}{2}$	$F^2 = 4 \sum_{i=1}^k \left(\sqrt{\hat{p}_i} - \sqrt{q_i} \right)^2$	Freeman and Tukey (1950)
Loglikelihood-ratio	$\lambda = 0$	$G^{2} = 2\sum_{i=1}^{k} \hat{p}_{i} \log\left(\frac{\hat{p}_{i}}{q_{i}}\right)$	Optimal for testing against certain nonlocal alternatives with some near- zero probabilities. Neyman (1949)
Cressie-Read	$\lambda = \frac{2}{3}$	$CR = \frac{9}{5} \sum_{i=1}^{k} \hat{p}_i \left[\left(\frac{\hat{p}_i}{q_i} \right)^{2/3} - 1 \right]$	A good choice when there is no knowledge of possible alternative models for both small and large sample sizes. Cressie and Read (1984)
Pearson's X ²	$\lambda = 1$	$X^{2} = \sum_{i=1}^{k} \frac{(\hat{p}_{i} - q_{i})^{2}}{q_{i}}$	Optimal for the equiprobable hypothesis against certain local alternatives in large sparse tables. Pearson (1900)

Above table is taken from Table 1 in Gilleland et al., (accepted to WAF). And is a summary of some information taken from: Read and Cressie (1988).

Simulation Experiment to test different hypothesis tests

Competing Forecast Verification Setting

- Simulate two time series of errors, $\varepsilon_A(t)$ and $\varepsilon_B(t)$, with
 - the same mean, $\mu_A = \mu_B = 0$, and with either
 - the same variances, $\sigma_A^2 = \sigma_B^2 = \sigma^2$ to empirically test for the size of various hypothesis tests, or
 - with $\sigma_B^2 > \sigma_A^2$ to empirically test for the power of the tests.
- Apply power-divergence test to test $\mathcal{H}_0: q_A = q_B = 1/2$ against $\mathcal{H}_1: q_A \neq q_B$.
 - Could test other alternative hypotheses, but here the focus is on the two-sided alternative.
- Repeat the above steps 1000 times.
 - For empirical size (when $\sigma_A = \sigma_B$), find the number of times \mathcal{H}_0 is (falsely) rejected and divide by 1000. The result is the empirical size of the test.
 - For empirical power, find the number of times \mathcal{H}_0 is (correctly) rejected and divide by 1000. The result is the empirical power of the test.

Empirical Power testing (using $\alpha = 5\%$ level) with simulations as in Hering and Genton (2011)

Test Cases: HRRR Temperature and Wind Speed

40

3

2

 $\vdash 0$

(a) loss differential ACF (b) loss differential PACF 0.8 0.8 Partial ACF 0.4 4 ACF o 0.0 0.0 -0.4 -0.4 20 30 30 10 40 10 20 0 0 Lag Lag 2-m temperature loss differential (c) 2-d histogram (d) 2-d histogram 1.5 5 1.0 0 0.5 0.5 S 5 ò ò 0.5 1.5 0.0 0.5 1.0 1.5 0.0 1.0 2-m temp. loss differential lag-1 2-m temp. loss differential lag-2

12-h forecasts of 2-m temperature (deg. C) extracted from the surface application of the Model Analysis Tool Suite (MATS, Turner et al. 2020). Comparing HRRR v. 3 and v. 4.

Matched observations are used with model forecast data from 1 August 2019 to 1 December 2020 when v. 3 of HRRR was operational at NCEP and v. 4 frozen as part of the evaluation phase.

Also looked at 10-m wind speed (m/s), which produces similar diagnostic plots as these, so not shown for brevity.

2 2.5 2.0 loss differential 2.0 1.5 0 1.0 5 1.0 0.5 0.0 2 -0.5 n 0.0 HRRR HRRR v. 3 loss v. 4 loss 0:0 3:00 6:00 0:6 0 ŝ **HG** test results 1.0 0.8 00 O p-value p-value 6 Ö 0.4 4.0 0.2 0 0 ö O. 2:00 5:00 8:00 1:00 2:00 5:00 8:00 11:00 14:00 2:000 23:00 4:0(23:00 0:0

12-h forecasts of 2-m temperature (deg. C)

12-h forecasts of 10-m wind speed (m/s)

HG test results

The Hering-Genton test (Hering and Genton 2011) is a t-test on the mean loss differential where the standard error is estimated in a way that accounts for temporal dependence, and the test is robust to contemporaneous correlation. It is a test on the intensity difference in error rather than the frequency of being better.

Test Cases: Turbulence

Moderate turbulence conditions: 0.1 $m^{2/3}s^{-1} \le EDR \le 0.3m^{2/3}s^{-1}$

λ	-5	-2	-1	-1/2	0	1/2	2/3	1	2	5
ME										
Power div.	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34
p-value	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.56

Severe turbulence conditions: EDR > $0.3m^{2/3}s^{-1}$, which is about 0.1% of the total sample.

λ	-5	-2	-1	-1/2	0	1/2	2/3	1	2	5
ME										
Power div.	11.99	11.45	11.34	11.30	11.27	11.25	11.25	11.24	11.24	11.44
p-value	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Test Cases: HRRR Temperature and Wind Speed

For all choices of λ applied previously, the power-divergence rejects – \mathcal{H}_0 at all times except at 9 and 12 UTC

Using $\lambda = 2/3$, \mathcal{H}_0 is rejected at all time points.

For large negative λ the test fails to reject \mathcal{H}_0 , where all of the choices of λ above -1, the test rejects \mathcal{H}_0 .

Results based on a 5%level test, but p-values estimated to be zero.

