Evaluating spatial quantitative precipitation forecasts in the form of binary images

Merging and Matching with the Baddeley Delta Metric

Eric Gilleland¹
Thomas Lee², Barb Brown¹, John Halley-Gotway¹ and Randy Bullock¹

¹National Center for Atmospheric Research (NCAR), Research Applications Laboratory (RAL)

²Colorado State University, Department of Statistics

Outline

- Motivation
- Baddeley Delta Metric
- Merging and Matching Strategy
- Test Case Examples
- Summary and Ongoing Work

Motivation: Verification of Quantitative Precipitation Forecasts

Motivation: Objectification Approach

Motivation: Objectification Approach

Example

- First four forecasts have POD=0; FAR=1; CSI=0
 - i.e., all are equally "BAD"
- Fifth forecast has POD>0, FAR<1, CSI>1
- Traditional verification approach identifies "worst" forecast as the "best"

Object Comparisons Outline

The goal is to find the best mergings and matchings.

- We need a metric.
- Using the chosen metric, we need a reasonably fast strategy for merging and matching.
- Baddeley metric is designed for the purpose of comparing images, and it can be fast.

Baddeley Delta Metric

The Baddeley delta metric is essentially an average of shortest distances between *every* pixel in an image raster and a set.

Baddeley Delta Metric

For a raster of pixels, X, the Baddeley delta metric for comparing set $A \subseteq X$ to set $B \subseteq X$ ($\Delta_w^p(A, B)$) is:

$$\Delta_w^p(A, B) = \Delta = \left[\frac{1}{n(X)} \sum_{x \in X} |w(d(x, A)) - w(d(x, B))|^p \right]^{1/p},$$

where d(x,A) is the shortest distance from a point $x \in X$ to the set (object) A, $1 \le p < \infty$ and w is a concave function ($w(s+t) \le w(s) + w(t)$) that is strictly increasing at zero (w(t) = 0 iff t = 0).

Baddeley Delta Metric

For a raster of pixels, X, the Baddeley delta metric for comparing set $A \subseteq X$ to set $B \subseteq X$ ($\Delta_w^p(A, B)$) is:

$$\Delta_w^p(A, B) = \Delta = \left[\frac{1}{n(X)} \sum_{x \in X} |w(d(x, A)) - w(d(x, B))|^p \right]^{1/p},$$

where d(x,A) is the shortest distance from a point $x \in X$ to the set (object) A, $1 \le p < \infty$ and w is a concave function ($w(s+t) \le w(s) + w(t)$) that is strictly increasing at zero (w(t) = 0 iff t = 0).

We use p=2 and $w(t)=\min(t,100)$

Lower values of Δ mean sets are more similar to each other.

Given a forecast image object with n_f objects and an analysis image object with n_a objects.

- Which objects from one field match "best" with objects from the other field?
- Which objects within an image should be merged?
- Ideally, one would compute all $2^{n_f} \cdot 2^{n_a} \Delta$'s for all possible mergings. Too computationally intensive!
- Here, we propose looking at a reasonable subset of the possible mergings.

Let $i=1,\ldots,n_f$ denote the i^{th} forecast object, and $j=1,\ldots,n_a$ the j^{th} analysis object.

1. Create the matrix $[\Delta(i,j)]$

Let $i=1,\ldots,n_f$ denote the i^{th} forecast object, and $j=1,\ldots,n_a$ the j^{th} analysis object.

- 1. Create the matrix $[\Delta(i,j)]$
- 2. Rank the values from Step 1.

Let $i=1,\ldots,n_f$ denote the i^{th} forecast object, and $j=1,\ldots,n_a$ the j^{th} analysis object.

- 1. Create the matrix $[\Delta(i,j)]$
- 2. Rank the values from Step 1.

For each object i, let $j_{(1)}, \ldots, j_{(n_a)}$ denote the objects with lowest to highest $\Delta(i, j)$ (and vice-versa)

Let $i=1,\ldots,n_f$ denote the i^{th} forecast object, and $j=1,\ldots,n_a$ the j^{th} analysis object.

- 1. Create the matrix $[\Delta(i,j)]$
- 2. Rank the values from Step 1.

For each object i, let $j_{(1)}, \ldots, j_{(n_a)}$ denote the objects with lowest to highest $\Delta(i,j)$ (and vice-versa)

3. Create a matrix with $\Delta(i, j_{(1)})$, , $\Delta(i, j_{(1, 2)}), \ldots, \Delta(i, j_{(1, ..., n_a)})$ Do the same for the other direction. (i.e., $\Delta(j, i_{(1)}), \ldots, \Delta(j, i_{(1, ..., n_a)})$

Let $i=1,\ldots,n_f$ denote the i^{th} forecast object, and $j=1,\ldots,n_a$ the j^{th} analysis object.

- 1. Create the matrix $[\Delta(i,j)]$
- 2. Rank the values from Step 1.

For each object i, let $j_{(1)}, \ldots, j_{(n_a)}$ denote the objects with lowest to highest $\Delta(i, j)$ (and vice-versa)

- 3. Create a matrix with $\Delta(i, j_{(1)})$, , $\Delta(i, j_{(1, 2)}), \ldots, \Delta(i, j_{(1, ..., n_a)})$ Do the same for the other direction. (i.e., $\Delta(j, i_{(1)}), \ldots, \Delta(j, i_{(1, ..., n_a)})$
- 4. Merge and match objects by comparing the above three matrices.
- 5. Accept merges/matches only for Δ below a chosen threshold.

Test Case 1 Forecast Observations 0.02 0.06 **Forecast** 0.07 1, 2, 4 80.0 0.08 **Observations**

Test Case 2

Summary and Ongoing Work

- Difficult to perform verification on QPF.
- One way to solve the problem is to objectify the QPF, and analyze the "cleaner" resulting objects.
- Before verification can be done on the resulting objects, they must be matched/merged.
- Baddeley delta metric is useful for comparing images.
- Need to compare our strategy with other approaches (e.g., fuzzy logic).
- Adapt our strategy so that the same (merged) analysis objects are compared to different forecasts.