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Outline

• Background to Ozone Application

• Background to Extreme Value Analysis

– Two approaches:

1. Model all of the data, and look at extremes.

2. Only model the extremes of the data.

• Previous Work:

1. Space-time model

2. Likelihood-based Extremes Model (w/ spatially coherent param-
eters)

• Bayesian Model for Spatial Extremes

• Summary and ongoing work
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Background to Ozone Application: Air Quality Standards

As required by the Clean Air Act (CAA) of 1971, the EPA has estab-
lished standards, known as the National Ambient Air Quality Standards
(NAAQS), to monitor and control ambient concentrations for six prin-
cipal air pollutants (also referred to as criteria pollutants):

• carbon monoxide (CO),

• lead (Pb),

• nitrogen dioxide (NO2),

• ground-level Ozone (O3),

• particulate matter (PM) and

• sulfur dioxide (SO2)
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Background to Ozone Application: New NAAQS for ozone

If the three-year average of the

4th-highest daily

maximum 8-hour average ozone (FHDA)

exceeds 84ppb, then attainment is not met.

4



Background to Ozone Application: New NAAQS for ozone

May make sense from a health/environment perspective.
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Background to Ozone Application: New NAAQS for ozone

May make sense from a health/environment perspective.

Presents a challenging statistical problem.
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Background to Ozone Application: New NAAQS for ozone

Attainment/Non-attainment regions
Regions with at least one ozone monitor are out of attainment when

the FHDA exceeds 84ppb (at any one monitoring station).

Regions without any monitoring can still be declared out of attainment,
but there is no way for the EPA to determine high ozone exposure in
such areas.
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Background to Ozone Application: New NAAQS for ozone

Goal: To infer extreme ozone spatially.
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Background to Ozone Application: Data

Here, we focus on a small homogeneous region over North Carolina (and
surrounding areas) with 5 years (seasons) of data, 72 locations.
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Background to Extreme Value Analysis: “Ordinary” vs Ex-
treme Value Statistics

“Ordinary” Statistics: Tries to describe main part of distribution; may
ignore outliers.

Extremes: Tries to characterize the tail of the distribution; keeps only
the extreme observations.

Extreme Value Theory:
Asymptotic justification for univariate distributions.

• GEV – models block maxima

• GPD – models threshold exceedances
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Generalized Pareto Distribution [Pickands, 1975]

P{Z > y + u|Z > u} ≈
(

1 +
ξy

σ

)−1/ξ

σ is scale parameter
ξ is shape parameter (controls tail behavior)
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Generalized Pareto Distribution [Pickands, 1975]

P{Z > y + u|Z > u} ≈
(

1 +
ξy

σ

)−1/ξ

σ is scale parameter
ξ is shape parameter (controls tail behavior)

But, how do we incorporate spatial structure here?
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Three Previously Studied Approaches

Space-Time Model

• Determine an AR model for every location, even the unobserved
ones. [more]

• Using spatially-coherent shocks, simulate every day of an Ozone sea-
son.

• Build up the distribution of the FHDA.

Naive Model

• Straightforward application of kriging to FHDA field. [more]

Likelihood-based Spatial Extremes Model

• Uses a Generalized Pareto with spatially cohesive scale parameters.
[more]
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Comparing the Space-Time and naive models

TPS Space-Time Naive
Variogram Correlation

1995 2.23 2.67 5.68 5.27
1996 2.49 2.85 5.96 5.90
1997 2.91 3.01 6.41 6.02
1998 2.75 2.93 5.35 4.85

M
P
S
E

1999 4.34 2.94 6.76 6.22

1995 5.34 4.73 5.19 5.33
1996 5.61 4.84 5.51 5.68
1997 6.27 4.59 6.03 6.05
1998 5.00 3.25 4.98 4.93

C
V

R
M

S
E

1999 6.25 4.91 6.47 6.30
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Probability of exceeding the standard

Space-Time Model Extreme-Value Model
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Summary of these models

• Simplicity of the naive model approach is desirable.

• Space-Time model yields consistently lower MSE from cross-validation.

• Space-Time model can account for “complicated” spatial features
without resorting to non-standard techniques.

• Space-Time MPSE is consistently too optimistic.

• Extreme value models good alternative to modelling the tail of dis-
tributions.

• Two very different approaches yield similar results
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Bayesian Hierarchical Model - Base Level

Let Zj(xi) be the ozone concentration recorded at the station located
at xi on day j.

Model Foundation:

We assume that ozone concentrations Zj(xi) that exceed a threshold u
are GPD, whose parameters depend on the station’s location.

P{Zj(xi)− u > y|Zj(xi) > u} =

(
1 +

ξiy

σ̃i

)−1/ξi
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Bayesian Hierarchical Model - Level 2

Zj(xi) ∼ GPD(σ̃i, ξi)

Since σ̃i > 0, we choose to model φi = log σ̃i.
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Bayesian Hierarchical Model - Level 2

Zj(xi) ∼ GPD(exp(φi), ξi)

Structure of φ:

We model φ with standard geophysical methods, choosing a multivariate
normal prior distribution.

φi = f (~α, covariatesi) + ε,

where ε ∼MVN(0,Σ), and Σi,i′ = g(~β, ||xi − x′i||2).
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Bayesian Hierarchical Model - Level 2

Zj(xi) ∼ GPD(exp(φi), ξi)

Structure of φ:

We model φ with standard geophysical methods, choosing a multivariate
normal prior distribution.

φi = f (~α, covariatesi) + ε,

where ε ∼MVN(0,Σ), and Σi,i′ = g(~β, ||xi − x′i||2).
We let:

f (~α, covariates) = α0 + α1(covariate 1) + . . . αn(covariate n)

g(~β, ||xi − x′i||2) = β0 ∗ exp(−β1 ∗ ||xi − x′i||2)

We can model ξ similarly.
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Bayesian Hierarchical Model - Level 3

Xj(xi) ∼ GPD(exp(φi), ξi)

φi = f (~α, covariates) + ε,

ε ∼MVN(0,Σ), where Σi,i′ = β0 ∗ exp(−β1 ∗ ||xi − x′i||2)

Priors for α: Non-informative αi ∝ Unif (−∞,∞)

Priors for β: Informative β0 ∝ Unif (0.01, 0.10) β1 ∝ Unif ( 3
250,

3
50)
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Threshold Selection

• Low enough to have enough data (i.e., low variance).

• High enough for the GPD to be appropriate (i.e., low bias).

A threshold of 65 ppb was found to be reasonable for these data
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Initial Results
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Initial Results
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Initial Results

Posterior for β0 and β1
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Ongoing and Future Work

• Have a flexible model that accounts for the tail behavior for ozone.

*******

• Run more models/do model comparison

• Add covariates (e.g., population, elevation, ...).

• Test prior sensitivity

• Bayesian model checks

• Obtain probabilities of exceeding the standard in a more sophisti-
cated way.
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Stop!
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Space-Time Approach: Space-Time Model

Let Y (x, t) denote the daily 8-hr max Ozone for m sites over n time
points. Consider,

Y (x, t) = µ(x, t) + σ(x)u(x, t),

where u(x, t) is a de-seasonalized zero mean, unit variance space-time
process, i.e.

u(x, t) = ρ(x)u(x, t− 1) + ε(x, t),

where |ρ(x)| < 1, the spatial shocks, ε(x, t), are independent over time,
but spatially correlated with covariance function

Cov(ε(x, t), ε(x′, t)) =
√

1− ρ2(x)
√

1− ρ2(x′)ψ(d(x,x′))

Note that µ(·, ·), σ(·) and ρ(·) are spatial fields. [back]
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Space-Time Approach: Space-Time Model

Algorithm to predict FHDA at unobserved location, x0.

1. Simulate data for an entire Ozone season

(a) Interpolate spatially from u(x, 1) to get û(x0, 1).

(b) Also interpolate spatially to get ρ̂(x0), µ̂(x0, ·) and σ̂(x0).

(c) Sample shocks at time t from [ε(x0, t)|ε(x, t)].
(d) Propagate AR(1) model.

(e) Back transform Ŷ (x0, t) = û(x0, t)σ̂(x0) + µ̂(x0, t)

2. Take fourth-highest value from Step 1.

3. Repeat Steps 1 and 2 many times to get a sample of FHDA at
unobserved location.

[back]
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Space-Time Approach: Space-Time Model

Distribution for the AR(1) shocks

[ε(x0, t)|ε(x, t)] (Step 1c) given by

Gau(M,Σ)

with
M = k′(x0,x)k−1(x,x)ε(x, t)

and
Σ = k′(x0,x0)− k′(x0,x)k−1(x,x)k(x,x0),

where k(x,y) represents the covariance between two spatial locations.

[back]
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Geostatistical Approach: Naive Model

Covariance

Estimate a covariance function for the FHDA field, and use it to predict
an unobserved location.

Ŷ (x0) = k′(x0,x)k−1(x,x)Y

where Y is the observed FHDA, k(x,y) is the covariance between two
locations x and y. This has variance,

k(x0,x0)− k′(x0,x)k−1(x,x)k(x,x0)
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Geostatistical Approach: Naive Model

Covariance

Two types of covariance: ψv and ψm. back
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More on σ(x)

σ(x) = P (x) + e(x) + η(x)

with P a linear function of space, e a smooth spatial process, and η
white noise (nugget).

• As λ −→∞, the surface tends toward just the linear function.

• As λ −→ 0, the surface will fit the data more closely.
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log of joint distribution

n∑
i=1

`GPD(y(xi, t), σ(xi), ξ)−
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log of joint distribution

n∑
i=1

`GPD(y(xi, t), σ(xi), ξ)−

λ(σ −Xβ)TK−1(σ −Xβ)/2− log(|λK|) + C
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log of joint distribution

n∑
i=1

`GPD(y(xi, t), σ(xi), ξ)−

λ(σ −Xβ)TK−1(σ −Xβ)/2− log(|λK|) + C

K is the covariance for the prior on σ at the observations.

This is a penalized likelihood:
The penalty on σ results from the covariance and smoothing parameter
λ. back
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