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INTRODUCTION: BACKGROUND



INTRODUCTION: OUTLINE
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• Results from two image pairs

• Future and Ongoing Work
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Localization performance measures

Some other choices of “distance” measures for comparing binary image objects A

and B for a discrete raster X are: the mean error distance,

ē(A, B) =
1

n(B)

∑
x∈B

d(x, A),

the mean square error distance

ē2(A, B) =
1

n(B)

∑
x∈B

d(x, A)2,

among others.
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Localization performance measures: some problems

Problems with the above error measures:

• Insensitive to type II errors (predicting an event when no event occurrs). For

example, if B ⊇ A (i.e., all errors are of type II), then ē = ē2 = 0 regardless of

the positions of the type II errors.

• They are also insensitive to patterns of type I errors.
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Metrics and notation

A metric is sensitive to type I and type II errors.

A metric, ∆, between two sets of pixels A and B contained in a pixel raster X

satisfies the axioms

• ∆(A, B) = 0 if and only if A = B;

• symmetry: ∆(A, B) = ∆(B, A);

• triangle inequality: ∆(A, B) ≤ ∆(A, C) + ∆(C, B)

(Similarly, for the “distance” between two pixels x and y, say ρ(x, y), in a raster

of pixels. Just replace ∆ with ρ and A, B with x, y.)
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Metrics and notation

Let d(x, A) denote the shortest distance from pixel x to A ⊆ X . That is,

d(x, A) = min{ρ(x, a) : a ∈ A}

Also, d(x, Ø) ≡ ∞.
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Metrics and notation

d(·, A) can be computed rapidly by the distance transform algorithm. See, for ex-

ample:

Borgefors, G. Distance transformations in digital images. Computer Vision, Graph-

ics and Image Processing, 34:344–371, 1986.

Rosenfeld and Pfalz, J.L. Sequential operations in digital picture processing. Jour-

nal of the Association for Computing Machinery, 13:471, 1966.

Rosenfeld and Pfalz, J.L. Distance functions on digital pictures. Pattern Recogni-

tion, 1:33–61, 1968.
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Metrics and notation: Hausdorff metric

Let A, B ∈ X , where X is a raster of pixels. The Hausdorff distance is given by:

H(A, B) = max{supx∈Ad(x, B), supx∈Bd(x, A)}

That is, H(A, B) is the maximum distance from a point in one set to the nearest

point in the other set.

(Also set H(Ø, Ø) = 0 and H(Ø, B) = H(B, Ø) = ∞ for B 6= Ø)
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Metrics and notation: Hausdorff metric

Under certain conditions (which are met for our purposes provided A, B 6= Ø) H

can be written as:

H(A, B) = supx∈X|d(x, A)− d(x, B)|
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The Hausdorff metric is the length of the red line here.
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H(A,B) has an extreme sensitivity to changes in even a small number of pixels.
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Baddeley’s Delta Metric

Replace the suprema in H(A, B) = supx∈X|d(x, A) − d(x, B)| with an Lp norm.

That is,

∆p(A, B) =

 1

n(X)

∑
x∈X

|d(x, A)− d(x, B)|p

1/p

for 1 ≤ p < ∞.

However, the above is not a bounded metric. One can simply transform the met-

rics d(x, ·) so that it is a bounded metric. Specifically, let w be a concave function

(w(s + t) ≤ w(s) + w(t)) that is strictly increasing at zero (w(t) = 0 iff t = 0). The

transformation used here is w(t) = min{t, c}, for a fixed c > 0. So, the new metric,

called Baddeley’s delta, is given by

∆p
w(A, B) =

 1

n(X)

∑
x∈X

|w(d(x, A))− w(d(x, B))|p

1/p
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Using Baddeley’s Delta Metric for object matching and merging

Given a forecast image object with nf objects and an analysis image object with na

objects.

• Which objects from one field match “best” with objects from the other field.

• Which objects within an image should be merged?

• Ideally, one would compute ∆ for all possible mergings. However, there are 2nf ·
2na possible mergings; which would generally be too computationally intensive

to be compared in practice.

• Here, we propose looking at a reasonable subset of the possible mergings.
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Using Baddeley’s Delta Metric for object matching and merging

The proposed technique is as follows.

Let i = 1, . . . , nf denote the ith forecast object, and j = 1, . . . , na the jth analysis

object.

1. Compute ∆ for each object from forecast with each object from analysis.

2. Rank the values from Step 1. For the ith forecast image, let j1, . . . , jna denote

the lowest to highest delta between object i and each object j. Similarly for

the jth analysis object denote i1, . . . , inf
as the lowest to highest delta when

comparing object j to each forecast object.

3. Compute ∆ between the ith forecast object and object j1, then between i and

j1 and j2 (merged together), and so on until object i is compared to the merging

of all na objects from the analysis image.

4. Perform Steps 3 and 4 in the other direction. That is, compute the delta between

object j and i1, j and i1 and i2, etc ...

5. Merge and match objects by comparing the above three Baddeley scores.
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Results from two image pairs

First image pair example: left is analysis image and right is forecast image. Overall

Baddeley delta metric is about 0.271.
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One-to-one Baddeley scores for each image (rows are analysis objects and columns

are forecast objects).
1 2 3 4 5 6 7 8

1 0.156 0.328 0.440 0.461 0.487 0.542 0.509 0.505

2 0.415 0.099 0.391 0.331 0.426 0.510 0.482 0.515

3 0.428 0.295 0.219 0.241 0.274 0.411 0.334 0.410

4 0.483 0.407 0.119 0.357 0.317 0.444 0.322 0.394

5 0.500 0.402 0.389 0.054 0.144 0.249 0.255 0.348

6 0.547 0.553 0.482 0.290 0.176 0.033 0.169 0.212

7 0.514 0.518 0.369 0.296 0.136 0.201 0.027 0.154
Ranks from above matrix.

1 2 3 4 5 6 7 8

1 9 24 40 42 46 54 49 48

2 37 4 31 25 38 50 44 52

3 39 20 14 15 18 36 26 35

4 45 34 5 28 22 41 23 32

5 47 33 30 3 7 16 17 27

6 55 56 43 19 11 2 10 13

7 51 53 29 21 6 12 1 8
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Results

Results of analysis-forecast matching. Note: forecast objects 5 and 8 not matched

to any analysis object.

Analysis (A) Forecast (B) Baddeley delta score

7 7 0.027

6 6 0.033

5 4 0.054

4 and 3 3 0.080

2 2 0.099

1 1 0.156
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Second image pair example: left is analysis image and right is forecast image. Overall

Baddeley Delta metric is about 0.223.
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Some Results

Baddeley delta one-to-one comparisons. Rows are analysis objects and columns are

forecast objects.
1 2 3 4 5 6

1 0.533 0.567 0.454 0.303 0.170 0.346

2 0.475 0.407 0.313 0.071 0.278 0.391

3 0.281 0.117 0.393 0.395 0.570 0.525

4 0.512 0.515 0.331 0.229 0.177 0.229

5 0.543 0.587 0.384 0.398 0.307 0.081

6 0.462 0.391 0.015 0.311 0.422 0.346
Ranks from previous matrix.

1 2 3 4 5 6

1 32 34 26 11 5 16

2 28 24 14 2 9 19

3 10 4 21 22 35 31

4 29 30 15 8 6 7

5 33 36 18 23 12 3

6 27 20 1 13 25 17

23



24



Results of matching analysis objects to forecast objects. Note: forecast object 1

not matched.

Analysis Forecast Baddeley delta score

6 3 0.015

1 and 4 5 0.069

2 4 0.071

5 6 0.081

3 2 0.117
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Future and Ongoing Work

• How to combine information from “best” matches/merges to give a summary

score based on the Baddeley delta.

• What constitutes a “good” Baddeley delta score (have a human expert judge

several cases?).

• How to incorporate into overall verification scheme.

• Characteristics/distributions of ∆’s.

• How to compare with Fuzzy Logic analysis of Bullock et al.

27



References

Baddeley, A.J., 1992: Errors in binary images and an Lp version of the Hausdorff

metric, Nieuw Archief voor Wiskunde, 10: 157–183.

Baddeley, A.J., 1992: An error metric for binary images, In W. Forstner and S.

Ruwiedel (ed.) Robust Computer Vision Algorithms, Proceedings, Interna-

tional Workshop on Robust Computer Vision, Bonn. Karlsruhe: Wichmann,

59–78.
See: http://www.maths.uwa.edu.au/~adrian/metrics.html

28


