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A set C ∈ Rd is an “extreme set” if

• we can partition C = ∪di=1Ci where

Ci = C ∩
{
x ∈ Rd : FXi(xi) > FXj(xj)

}
for all i 6= j

(Ci is the set on which Xi is “most extreme” among X1, ..., Xd,
extremeness being measured by marginal tail probabilities)

• The set Ci satisfies the following property: there exists a vXi
such that

X ∈ Ci if and only if X ∈ Ci and Xi > vXi.

(or: if X = (X1, ..., Xd) ∈ Ci then so is any other X for which
Xi is more extreme)

The objective of the paper is to propose a general methodology
for estimating probabilities of extreme sets.

2



Marginal distributions

• Standard “GPD” model fit: define a threshold uXi and as-
sume

Pr{Xi > uXi + x | Xi > uXi} =

(
1 + ξi

x

βi

)−1/ξi

+

for x > 0.

• Also estimate FXi(x) by empirical CDF for x < uXi.

• Combine together for an estimate F̂Xi(x) across the entire
range of x.

• Apply componentwise probability integral transform — Yi =
− log[− log{F̂Xi(Xi)}] to have approximately Gumbel margins
(i.e. Pr{Yi ≤ yi} ≈ exp(−e−y)).

• Henceforth assume marginal distributions are exactly Gumbel
and concentrate on dependence among Y1, ..., Yd.
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Existing techniques

Most existing extreme value methods with Gumbel margins re-

duce to

Pr{Y ∈ t+A} ≈ e−t/ηY Pr{Y ∈ A}

for some ηY ∈ (0,1]. Ledford-Tawn classification:

• ηY = 1 is asymptotic dependence (includes all conventional

multivariate extreme value distributions)

• 1
d < ηY < 1 — positive extremal dependence

• 0 < ηY < 1
d — negative extremal dependence

• ηY = 1
d — near extremal independence

Disadvantage: doesn’t work for extreme sets that are not simul-

taneously extreme in all components
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The key assumption of this paper

Define Y−i to be the vector Y with i’th component omitted.

We assume that for each yi, there exist vectors of normalizing

constants a|i(yi) and b|i(yi) and a limiting (d − 1)-dimensional

CDF G|i such that

lim
yi→∞

Pr{Y−i ≤ a|i(yi) + b|i(yi)z|i} = G|i(z|i). (1)

Put another way: as ui →∞ the variables Yi − ui and

Z−i =
Y−i − a|i(Yi)

b|i(Yi)

are asymptotically independent, with distributions unit exponen-

tial and G|i(z|i).

5



Examples in case d = 2

Distribution η a(y) b(y)
Perfect pos. dependence 1 y 1
Bivariate EVD 1 y 1

Bivariate normal, ρ > 0 1+ρ
2 ρ2y y1/2

Inverted logistic, α ∈ (0,1] 2−α 0 y1−α

Independent 1
2 0 1

Morganstern 1
2 0 1

Bivariate normal, ρ < 0 1+ρ
2 − log(ρ2y) y−1/2

Perfect neg. dependence 0 − log(y) 1

Key observation: in all cases b(y) = yb for some b and a(y) is

either 0 or a linear function of y or − log y (for more precise

conditions see equation (3.8) of the paper)
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The results so far suggest the conditional dependence model

(Section 4.1) where we assume the asymptotic relationships con-

ditional on Yi = yi are exact above a given threshold uYi, or in

other words

Pr{Y−i < a|i(yi) + b|i(yi)z|i | Yi = yi} = G|i(z|i), yi > uYi.

Here a|i(yi) and b|i(yi) are assumed to be parametrically depen-

dent on yi through one of the alternative forms given by (3.8),

and G|i(z|i) is estimated nonparametrically from the empirical

distribution of the standardized variables

Ẑ−i =
Y−i − â|i(yi)

b̂|i(yi)
for Yi = yi > uYi.

N.B. The threshold uYi does not have to correspond to the

threshold uXi used for estimating the marginal GPDs.
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Some issues raised by this representation:

• Self-consistency of separate conditional models? (Section

4.2)

• Extrapolation — critical to have parametric forms for a|i(yi)
and b|i(yi) (Section 4.3)

• Diagnostics — combine standard diagnostics for marginal

extremes with tests of independence of Z−i and Yi. Also test

whether the separate components of Z−i are independent,

since estimation via empirical distribution is much simpler in

this case.
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Inference

1. Estimation of marginal parameters

If ψ denotes the collection of all (βi, ξi) parameters for the indi-
vidual GPDs, maximize

logL(ψ) =
d∑

i=1

nuXi∑
k=1

log f̂Xi(xi|i,k)

Here nuXi
is the number of threshold exceedances in the i’th

component and f̂Xi(xi|i,k) is the GP density evaluated at the
k’th exceedance.

[In essence, if there is no functional dependence among the
(βi, ξi) for different i then this is just the usual marginal estima-
tion of the GPD in each component. But if there is functional
dependence, we estimate the parameters jointly by combining the
individual likelihood estimation equations, ignoring dependence
among the components.]
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2. Single conditional

i.e. How do we estimate a|i(yi) and b|i(yi) for a single i, assuming
parametric representation?

The problem: don’t know the distribution of Z|i.

The solution: do it as if the Z|i were Gaussian with known means
µµµ|i and standard deviations σσσ|i

This leads to the formulae

µµµ|i(y) = a|i(y) + µµµ|ib|i(y),
σσσ|i(y) = σσσ|ib|i(y),

and estimating equation

Qi = −
∑
j 6=i

nuYi∑
k=1

logσj|i(yi|i,k) +
1

2

yj|i,k − µj|i(yi|i,k)

σj|i(yi|i,k)


2
 .
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3. All conditionals

To estimate all a|i(yi) and b|i(yi) jointly maximize

Q =
d∑

i=1

Qi.

Analogous with pseudolikelihood estimation (Besag 1975)
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4. Uncertainty

Bootstrap.....
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Air quality application

The data: daily values of five air pollutants (O3, NO2, NO, SO2,

PM10) in Leeds, U.K., during 1994–1998.

Two seasons: winter (NDJF), early summer (AMJJ)

Omit values around November 5 and some clear outliers

Marginal model: fit GPD above a (somewhat) high threshold,

estimate 99% quantile with standard error (Table 4)
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Dependence model

Transform margins to Gumbel, select threshold for dependence
modeling. Selected to be 70% quantile (for all five variables)

Estimate (aj|i, bj|i) and (ai|j, bi|j) for each combination of i 6=
j, with sampling variability represented by convex hull of 100
bootstrap simulations (Fig. 5).

Several pairs do not exhibit weak pairwise exchangeability (e.g.
PM10, O3 in summer)

Components of Z|i are typically dependent

Some pairs exhibit negative dependence (e.g. O3, NO in winter
— consistent with chemical reactions)

Fig. 6 shows pseudosamples of other variables given NO over
threshold (C5(23) are points for which sum of all 5 variables on
Gumbel scale exceeds 23)
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Estimation of critical functionals

Contrast “joint probability” with “structure variable” approach

(Coles and Tawn 1994)

(a) Estimate conditional mean of each other variable given that

NO is about 95% or 99% threshold (Table 5)

(b) Sums of variables on Gumbel scale, e.g. for a subset M ⊆
{1, ..., d} with |M| = m, define Cm(v) = {y :

∑
i∈M yi > v}; define

p-quantile vp by property Pr{Y ∈ C(vp)} = p.

Compute return-level estimates for Cm(v) with M corresponding

to (O3,NO2) and (NO2,SO2,PM10) (Fig. 7)
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Comments on the whole approach

(based on my “vote of thanks”)

1. Is it general enough? Consider independent Gumbel (Z1, Z2)

and define

Y1 = Z1,

Y2 = max(Z1, Z2)− log 2.

The conditional distribution of Y1 | Y2 = y2 is a mixture: either

Y1 = Y2 with probability 1
2, or Y1 is Gumbel independently of

y2. This sort of behavior is not captured by renormalizing to an

asymptotic distribution

However Heffernan and Tawn in their response pointed out that

this sort of degeneracy arises with other MEV models as well
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2. Form of a|i(yi) and b|i(yi)

A very interesting preprint has appeared by Janet Heffernan and

Sid Resnick (see either of their webpages)

For bivariate (X,Y ), they consider conditions under which

lim
t→∞

tPr

{
X − β(t)

α(t)
≤ x,

Y − b(t)

a(t)
> y

}
= µ([−∞, x]× [y,∞])

(2)

for functions a(t), b(t), α(t), β(t) and a nondegenerate measure µ.

For example if b(t) = 0, a(t) = t (which they call standard form),

(2) leads to

lim
t→∞

Pr

{
X − β(t)

α(t)
≤ x | Y > t

}
= µ([−∞, x]× [0,∞]) (3)
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Under this condition they show

lim
t→∞

α(tc)

α(t)
= ψ1(c), lim

t→∞
β(tc)− β(t)

α(t)
= ψ2(c),

from which it follows that ψ1(x) = xρ for some ρ, and

ψ2(x) =

{
kx

ρ−1
ρ if ρ 6= 0

k logx if ρ = 0

(but k may be 0, which causes problems)

They consider cases for which limits do or do not exist. For ex-

ample, if (X,Y ) is bivariate normal, transforming X to log Pareto

form is OK, but transforming X to Pareto is not. They also show

much stronger connections with traditional multivariate regular

variation theory.
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3. Estimation methods — why so many different techniques?

4. Application — needs a punch line.

My suggestion was to use chemical models to determine combi-

nations of pollutants that would be likely to result in violations

of standards — could have an impact on control strategies.

5. Nobody really took them to task on the possible lack of con-

sistency of conditional distributions — still a potential problem

with this whole approach.
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