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Block Maxima

1. Simulate a sample of size 1000 from a Gamma distribution (e.g., ?rgamma) with
both shape and rate parameters of 1 and another with both parameters of 1/2
(save them as g1 and g2). Fit the GEV distribution to each sample and check the
plot diagnostics. Are the assumptions for fitting teh GEV reasonable?

2. Now obtain a sample of size 100 of maxima from samples of size 1000 of the above
two distributions and fit the GEV distribution to each (save these as gmax1 and
gmax2). Now how do the assumptions look?

3. Use ci with argument type = "parameter" to obtain normal approximation CI’s
for the GEV parameters in each of the above fits. Is zero in the interval for the
shape parameters?

4. Use ci to find the estimated 25- and 100-year return levels (we’ll assume each data
point represents a year) along with 95% CI’s. Hint: see ?fevd for help.

5. Generate a sample of size 100 by taking maxima of random samples of size 1000
from a GEV(µ = 0, σ = 1, ξ = 1/4), and fit the GEV distribution to this sample.
Check the diagnostics. Are the assumptions reasonable? Given that the GEV
distribution is max stable, do the results make sense?

6. Simulate samples from a GEV(µ = 2, σ = 3/2, ξ = −1/2) of size 10. Fit the GEV
distribution using the default MLE method, L-moments (use argument method =

"Lmoments"), and GMLE (method = "GMLE"). Compare the fit diagnostics and
estimates. Use ci with argument type = "parameter" for each fit to compare the
resulting uncertainty estimates. How do they compare with each other and the
“true” parameters? Use ci to obtain the 100-year return level estimate with 95%
CI’s for each fit. How do they compare (Hint: you can use rlevd to obtain the
“true” 100-year return level)?

7. Draw a sample of size 100 of maxima from normally distributed samples of size
1000 and fit the GEV to the sample. Given that the Gumbel distribution (i.e.,
ξ = 0) is in the domain of attraction of the normal distribution, is your estimate
for ξ = 0? Why not? Is zero within the 95% CI’s for ξ?
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8. Draw samples from the three types of GEV distributions and look at their his-
tograms. What do you notice about the histograms and the tail behavior?

Counting Extremes

1. Load the dataset FCwx (i.e., data( "FCwx" ), and use FCwx to learn about the
data).

2. Apply the following code to obtain counts of the number of days that the daily
maximum temperature exceeds 95o F.
tempGT95 <- c(aggregate(FCwx$MxT, by = list(FCwx$Year),

function(x) sum(x > 95, na.rm = TRUE))$x)
yr <- unique(FCwx$Year)

3. Plot the counts. Does the frequency appear to be constant over time, or does it
appear to be changing? If so, how is it changing?

4. Fit the Poisson distribution to these count data using MLE and test whether or
not the mean equals the variance (Hint: use fpois).

5. Using the yr data from the code above, use glm with argument family = poisson()

to fit a non-homogenous Poisson distribution (a Poisson regression) to the count
data using year as a covariate. Use summary to test for the inclusion of year as a
covariate. Is it significant? Does that jive with your answer to question 3 above?
Do the diagnostic plots imply that the assumptions for using this model appear
reasonable?

6. Instead of year, tyr fitting a model with an indicator for before 1950 v. after
1950. Is the AIC lower? Do the model assumptions appear reasonable? Any other
models to try?

Point Process

1. Load the Denversp data set, and plot precipitation against hour. What do you
notice?

2. Plot precipitation against Day. Plot it against Year.

3. Use mrlplot to make a mean-residual life plot of the Denver precipitation data. At
about what precipitation value does the plot become linear within the uncertainty?
See ?mrlplot for more on what this plot means.

4. Use threshrange.plot to fit the GPD to the precipiation data over a range of
thresholds and plot the (transformed) scale and shape parameters against the
threshold values. How low of a threshold appears reasonable?
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5. Use atdf to make auto tail dependence plots of the precipitation data using the
probability threshold of 0.8 (note that this is a probability threshold and not a
direct precipitation threshold). Use extremalindex with a threshold of 0.395 mm
to estimate the extremal index and, if necessary, obtain an estimated run length
should runs declustering be useful.

6. Fit a Poisson point process to the precipitation data using a threshold of 0.395 mm
and check the fit diagnostics. Note that the data are hourly (24 hours per day)
over only the month of July, which has 31 days, so there are 31 ∗ 24 = 744 days
per year, so you should use time.units = "744/year" though it does not seem
to matter in this case.

7. Use the relation log λ = −1/ξ · log{1 + ξ(u − µ)/σ} to estimate the Poisson rate
parameter.

8. Create an object that indicates day or night using daynight <- (Denversp$Hour
<= 5) | (Denversp$Hour >17), attach it to the Denversp data frame, and fit the
Poisson to the precipitation data again but allowing the location parameter to vary
according to day or night. Hint: use argument location.fun = ~ dayornight.
Use a different name for the fitted object than you used for the previous fit. Does
the model have a lower AIC/BIC? Use lr.test to perform a likelihood-ratio test
on whether the inclusion of the diurnal cycle is significant or not.

And now for something difficult...

Here, we will use the R library astsa by Stoffer and Poison (use citation( "astsa")

to see the full reference). In particular, we will look at the fish recruitment and Soutern
Oscillation Index data. We will look at both the extreme high recruitment and extreme
low recruitment. First, it is helpful to follow some of the code from the book by Shumway
and Stoffer (2017):

Shumway, R. H. and D. S. Stoffer, 2017. Time Series Analysis and its Applications:
With R Examples. Springer International Publishing, Switzerland, 562 pp. (Fourth
Edition).

Plot the two time series.

par( mfrow = c(2,1) )

plot( soi, ylab = "", xlab = "", main = "Southern Oscillation Index" )

plot( rec, ylab = "", xlab = "", main = "Recruitment (new fish)" )

Plot the ACF and cross-correlation plots.

par( mfrow = c(3,1) )

acf( soi, lag.max = 48, main = "SOI", xaxt = "n" )
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axis( 1, at = 0:4, labels = 0:4 * 12 )

acf( rec, lag.max = 48, main = "Recruitment", xaxt = "n" )

axis( 1, at = 0:4, labels = 0:4 * 12 )

ccf( soi, rec, lag.max = 48, main = "SOI v. Recruitment",

ylab = "CCF", xaxt = "n" )

axis( 1, at = (-4):4, labels = (-4):4 * 12 )

Plot the lagged scatter plots with trend lines and cross lag plots with trend lines.

lag1.plot( soi, 12 )

lag2.plot( soi, rec, 8 )

Add a lag-6 SOI column and line things up properly. Then fit a linear regression
between fish recruitment and the lag-6 SOI.

fish <- ts.intersect( rec, soiL6 = lag( soi, -6 ), dframe = TRUE )

summary( fit1 <- lm( rec soiL6, data = fish, na.action = NULL ) )

Add a dummy variable that simply states whether SOI is less than zero or not, and
do another regression.

dummy <- ifelse( soi < 0, 0, 1 )

fish <- ts.intersect( rec, soiL6 = lag( soi, -6 ), dL6 = lag( dummy, -6),

dframe = TRUE )

fit <- lm( rec soiL6 * dL6, data = fish, naaction = NULL )

summary( fit )

plot( rec soiL6, data = fish )

lines( lowess( fish$soiL6, fish$rec ), col = 4, lwd=2 )

points( fish$soiL6, fitted( fit ), pch = "+", col=2 )

plot( resid( fit ) )

acf( resid( fit ) )

hist( fish$rec)
Now that we’ve thoroughly looked at the main part of the data, time to tackle the

extremes. Add a variable to the fish data frame that is the negative of recruitment.
Doing so allows us to use exactly the same mechanics we used for threshold exceedances
for threshold deficits. We just need to keep in mind that the functions will not re-negate
anything for us later. The scale and shape parameters will not need to change, but
locations and thresholds will need to be negated, as well as return levels.

I suggest trying to fit the EVD’s to the negative values first. You might even use
blockmaxxer to find annual minima (i.e., maxima of the negated values) and fit the
GEV to these data first. Note, however, how many annual minima there are. In trying
to fit EVD’s to these data, understand that it will not go smoothly and may not have a
good solution. When fitting to the non-negated data, keep in mind that the MLE does
not exist when ξ < −1. Some things to try when trying to get a good fit include, but
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are not limited to: change the optimization routine with optim.args, change the initial
values to the optimization routine (see ?fevd), try using L-moments (with GPD or GEV
only), try using GMLE and Bayesian estimation. Also try incorporating the SOI lagged
values.

The point of this exercise is to learn all of the techniques at your disposal to try to
arrive at a fit. Many times one or more of the methods will work, but sometimes it is
impossible.
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