Martins ES and Stedinger JR. (March 2000). Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. *Water Resources Research* **36**(3):737–744. (henceforth, 2000P)

Martins ES and Stedinger JR. (October 2001). Generalized maximum-likelihood Pareto-Poisson estimators for partial duration series. *Water Resources Research* **37**(10):2551– 2557. (henceforth, 2001P)

http://www.ral.ucar.edu/staff/ericg/readinggroup.html

Outline

- Overview of Applications (both papers); predominantly flood frequency analysis (2001P)
- Overview of GEV (2000P)/PDS,AMS (2001P)
 - Review
 - Estimation methods with brief comparison from previous studies
 - Theoretical properties of parameters
 - Lit. Review (2000P)
 - Transformations between GEV/GPD (2001P)
 - Small samples (both papers)
- Small sample simulation
- GMLE
- Results

Overview of GEV/PDS: Review

Extremal Types Theorem: X_1, \ldots, X_n random sample from any distribution.

$$\Pr\{\frac{\max\{X_1,\ldots,X_n\}-b_n}{a_n} \le z\} \longrightarrow G(z) \text{ as } n \longrightarrow \infty$$

where G(z) is one of three types of distributions.

- I. (Gumbel) $G(z) = \exp\{-\exp\left[-\left(\frac{z-b}{a}\right)\right]\}, -\infty < z < \infty.$
- II. (Fréchet) $G(z) = \exp\{-\left(\frac{z-b}{a}\right)^{-\alpha}\}, z > b \text{ and } 0 \text{ otherwise.}$
- III. (Weibull) $\exp\{-\left[-\left(\frac{z-b}{a}\right)^{\alpha}\right]\}$, z < b and 1 otherwise.

(where a > 0, $\alpha > 0$ and b are parameters).

Extremal Types Theorem

The above three distributions can be combined into a single family of distributions.

$$G(z) = \exp\{-\left[1 + \xi\left(\frac{z-\mu}{\sigma}\right)\right]^{-1/\xi}\}$$

G is called the generalized extreme value distribution (GEV).

Three parameters: location (μ) , scale (σ) and shape (ξ) .

These papers use ξ for location, α for scale and κ for shape Also, κ is parametrized differently. Specifically, $\kappa = -\xi$ from the above representation.

Overview of GEV/PDS: Theoretical properties of parameters

Overview of GEV/PDS: Theoretical properties of parameters

- 1. The GEV is only defined when $1 + \xi \left(\frac{z-\mu}{\sigma}\right) > 0$.
- Range of data is dependent upon unkown parameters! Hence, regularity conditions for MLE do not necessarily hold.

(a) For
$$\xi > 0$$
, $\mu - \sigma/\xi \le x$.
(b) For $\xi < 0$, $x \le \mu - \sigma/\xi$.

- 3. For $\xi \ge -0.5$ desirable asymptotic properties of efficiency and normality of MLE's hold.
- 4. If $\xi < -1$, the density $\longrightarrow \infty$ as $\mu \sigma/\xi$ approach the largest observation.
- 5. Even under 2a above, the MLE can perform satisfactorily if the likelihood is modified; but does not help for small samples.

Overview of GEV/PDS: Estimation methods

- Hosking *et al.* (1985) showed L-moments to be superior for GEV to MLE in terms of bias and variance for small sample sizes (n = 15 to n = 100).
- Madsen *et al.* show MOM quantile estimators have smaller RMSE for $-0.30 < \xi < 0.25$ than both LM and MLE when estimating the 100-year event with $n \in [10, 50]$; with MLE preferable for $\xi < -0.3$ and $n \ge 50$.
- It is straightforward to incorporate censored data (covariates) into MLE; but not with LM/MOM.

Overview of GEV/PDS: Generalized Pareto Distribution (GPD)

Exceedance Over Threshold Model For X random (with cdf F) and a (large) threshold u

$$\Pr\{X > x | X > u\} = \frac{1 - F(x)}{1 - F(u)}$$

Then for x > u (*u large*), the GPD is given by

$$\frac{1 - F(x)}{1 - F(u)} \approx [1 + \frac{\xi}{\sigma}(x - u)]^{-1/\xi}$$

Overview of GEV/PDS: Transformations between GEV/GPD (2001P)

(Here, taken from extRemes toolkit tutorial using the $\xi = -\kappa$ parameterization of GEV).

$$\log \lambda = -\frac{1}{\xi} \log\{1 + \xi \frac{u - \mu}{\sigma}\}$$

$$\sigma^* = \sigma + \xi(u - \mu)$$

etc...

Small sample simulation

Small sample simulation

GMLE

• Coles and Dixon (1999)

$$L_{pen}(\mu, \sigma, \xi) = L(\mu, \sigma, \xi) \times P(\xi),$$

where

$$P(\xi) = I_{\xi \le 0} 1 + I_{0 < \xi < 1} \exp\{-\lambda(\frac{1}{1-\xi} - 1)^{\alpha}\}$$

• Martins and Stedinger (2000, 2001)

$$GL(\mu, \sigma, \xi | x) = L(\mu, \sigma, \xi) \times \pi(\xi),$$

where $\pi(\xi)$ is a Beta prior.

GMLE

As sample size increases, information in the likelihood *should* dominate the GMLE estimator, so that MLE and GMLE asymptotically have the same desirable properties.

(2000P)

- For $\xi \ge 0$, GMLE does better than MOM and LM at estimating quantiles.
- If $\xi < 0$, then a more appropriate prior should be used with GMLE.
- For ξ = 0.10, two-parameter GEV/MLE is better than three-parameter GEV/GMLE (in a narrow region).
 (2001P)
- For $\xi \ge 0$, GMLE performs about the same for both PDS and AMS; superior to other quantile estimators.
- MOM is just as good for $\xi = 0$ and better for $\xi \leq 0$.
- Two-parameter PDS/exponential-Poisson MLE is better than three-parameter PDS/GP GMLE in a narrow region.

That's all! Unless you want more.

Estimation methods

- Maximum Likelihood Estimation (MLE)
- Method of L Moments
- Bayesian estimation

MLE

Assuming Z_1, \ldots, Z_m are iid random variables that follow the GEV distribution the log-likelihood is given by the following.

$$\ell(\mu, \sigma, \xi) = -m \log \sigma - \left(1 + \frac{1}{\xi}\right) \sum_{i=1}^{m} \log \left[1 + \xi \left(\frac{z_i - \mu}{\sigma}\right)\right] - \sum_{i=1}^{m} \left[1 + \xi \left(\frac{z_i - \mu}{\sigma}\right)\right]^{-1/\xi}$$

L Moments

Probability Weighted Moments (PWM)

$$M_{p,r,s} = E \left[X^{p} \{ F(X) \}^{r} \{ 1 - F(X) \}^{s} \right]$$

L-moments are based on the special cases $\alpha_r = M_{1,0,r}$ and $\beta_r = M_{1,r,0}$. Specifically, let x(u) be the quantile function for a distribution, then:

$$lpha_r = \int_0^1 x(u)(1-u)^r du$$
 $eta_r = \int_0^1 x(u)u^r du$

Compare to ordinary moments: $E(X^r) = \int_0^1 \{x(u)\}^r du$.

L-moments

Much more to it, but the moments derived in the paper come from:

•
$$\lambda_1 = \alpha_0 = \beta_0$$
,

•
$$\lambda_2 = \alpha_0 - 2\alpha_1 = 2\beta_1 - \beta_0$$
 and

•
$$\lambda_3 = \alpha_0 - 6\alpha_1 + 6\alpha_2 = 6\beta_2 - 6\beta_1 + \beta_0$$

More generally

$$\lambda_r = \int_0^1 x(u) \sum_{k=0}^{r-1} \frac{(-1)^{r-k-1}(+k-1)!}{(k!)^2(r-k-1)!} du$$

Alternatively

- For n = 1, $X_{1:1}$ estimates location. If distribution is shifted to larger values, then $X_{1:1}$ is expected to be larger. (Hence, $\lambda_1 = E(X_{1:1})$)
- For n = 2, $X_{2:2}-X_{1:1}$ estimates scale (dispersion). If dist'n is tightly bunched, small value. (Hence, $\lambda_2 = \frac{1}{2}E(X_{2:2} X_{1:2})$)
- For n = 3, $X_{3:3} 2X_{2:3} + X_{1:3}$ measures skewness. (i.e., $X_{3:3} X_{2:3} \approx X_{2:3} X_{1:3}$). (Hence, $\lambda_3 = \frac{1}{3}E(X_{3:3} 2X_{2:3} + X_{1:3})$)

And in general,

$$\lambda_r = r^{-1} \sum_{j=0}^{r-1} (-1)^j \frac{(r-1)!}{j!(r-j-1)!} E(X_{r-j:r})$$

Hosking JRM and Wallis JR. 1997. *Regional Frequency Analysis: An Approach Based on L-Moments*. Cambridge University Press. Applied Introductory references to extreme value statistical analysis

- Coles S. 2001. An Introduction to Statistical Modeling of Extreme Values. Springer.
- Gilleland E and Katz, RW. 2005. Tutorial to Extremes Toolkit.

http://www.assessment.ucar.edu/toolkit

- Katz RW, Parlange MB, and Naveau P. 2002. Statistics of extremes in hydrology. *Advances in Water Resources*, **25**:1287–1304.
- Smith RL. 2002. Statistics of extremes with applications in environment, insurance and finance. http://www.stat.unc.edu/postscript/rs/semstatrls.pdf