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Overview of GEV/PDS: Review

Extremal Types Theorem: Xi,...,X, random sample from
any distribution.

max{Xi,..., Xn} —b

Qn,

Pr{ "<z} — G(2) as n —

where G(z) is one of three types of distributions.
I. (Gumbel) G(z) = exp{— exp [— (;b)]} —00 < z < 00.

II. (Fréchet) G(z) = exp{— (%‘b)_a}, z > b and 0 otherwise.

III. (Weibull) exp{— [— (%)a}} z < b and 1 otherwise.

(where a > 0, o > 0 and b are parameters).



Overview of GEV/PDS: Review

Extremal Types Theorem

The above three distributions can be combined into a single
family of distributions.

a2 =em(- [14e(* 1)

G is called the generalized extreme value distribution (GEV).

Three parameters: location (), scale (o) and shape (£).

These papers use & for location, « for scale and « for shape
Also, k is parametrized differently. Specifically, Kk = —& from
the above representation.



Overview of GEV/PDS: Theoretical properties of
parameters
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Overview of GEV/PDS: Theoretical properties of
parameters

1. The GEV is only defined when 1 +¢ (=) > 0.

2. Range of data is dependent upon unkown parameters!
Hence, regularity conditions for MLE do not necessarily
hold.

(a) For £ >0, u—o/& <.
(b) For £ <0, x <u—o/¢.

3. For £ > —0.5 desirable asymptotic properties of efficiency
and normality of MLE's hold.

4.If € < —1, the density — oo as u—o /€ approach the largest
observation.

5. Even under 2a above, the MLE can perform satisfactorily
if the likelihood is modified; but does not help for small
samples.



Overview of GEV/PDS: Estimation methods

e Hosking et al. (1985) showed L-moments to be superior
for GEV to MLE in terms of bias and variance for small
sample sizes (n = 15 to n = 100).

e Madsen et al. show MOM quantile estimators have smaller
RMSE for —0.30 < £ < 0.25 than both LM and MLE when
estimating the 100-year event with n € [10,50]; with MLE
preferable for £ < —0.3 and n > 50.

e It is straightforward to incorporate censored data (covari-
ates) into MLE; but not with LM/MOM.



Overview of GEV/PDS: Generalized Pareto Dis-
tribution (GPD)

Exceedance Over Threshold Model
For X random (with cdf F') and a (large) threshold «

1— F(x)
1 — F(u)

Pr{X > x| X >u} =

Then for z > u (u large), the GPD is given by
1— F(x)
1 — F(u)

S+ S



Overview of GEV/PDS: Transformations between
GEV/GPD (2001P)

(Here, taken from extRemes toolkit tutorial using the £ = —k
parameterization of GEV).

U — [
—

log \ = —% log{1 4 &

0" =0+ &(u—p)

etc...
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Small sample simulation
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GMLE

e Coles and Dixon (1999)
Lpen(,ua 0,§) = L(p,0,8) x P(&),

where
1
P(€) = Ig<ol + lo<e<a eXD{—A(1—_§ — 1)
e Martins and Stedinger (2000, 2001)
GL(’“" O-’glx) — L(,U,, g, é.) X 77(5)7

where w(£) is a Beta prior.



GMLE

As sample size increases, information in the likelihood should
dominate the GMLE estimator, so that MLE and GMLE
asymptotically have the same desirable properties.



Results

(2000P)

e For £ > 0, GMLE does better than MOM and LM at
estimating quantiles.

o If £ < 0O, then a more appropriate prior should be used with
GMLE.

e For £ = 0.10, two-parameter GEV/MLE is better than
three-parameter GEV/GMLE (in a narrow region).

(2001P)

e For £ > 0, GMLE performs about the same for both PDS
and AMS: superior to other quantile estimators.

e MOM is just as good for £ = 0 and better for £ < O.

e Two-parameter PDS/exponential-Poisson MLE is better
than three-parameter PDS/GP GMLE in a narrow region.



That's alll Unless you want more.




Estimation methods

e Maximum Likelihood Estimation (MLE)
e Method of L Moments

e Bayesian estimation



MLE

Assuming Zi,..., Z, are iid random variables that follow the
GEV distribution the log-likelihood is given by the following.

U, 0,€) = —mlogo — (14 1) ¥, log [1 + ¢ (3]

[ ()



L Moments

Probability Weighted Moments (PWM)
Mprs = E[XH{F(X)}'{1 - F(X)}’]

L-moments are based on the special cases a, = M, and
B = M1 ,0. Specifically, let z(u) be the quantile function for
a distribution, then:

o /01 x(uw)(1 —u)'du

B, = /01 x(uw)u'"du

Compare to ordinary moments: E(X") = [ {z(u)} du.



L -moments

Much more to it, but the moments derived in the paper come
from:

e \1 = apg = fo,

e \o = g — 21 = 231 — Bp and

® \3 =g — 6a1 + 6a2 =682 — 681 + Bo
More generally

_ < (=1)F 1(+k 1)!
)\T—/ a:(u)kzo (E2(r — k — 1)1 du




Alternatively

e Forn =1, X7 estimates location. If distribution is shifted
to larger values, then X;.1 is expected to be larger. (Hence,
A= F(X11))

e Forn = 2, X».,—X;.1 estimates scale (dispersion). If dist'n
is tightly bunched, small value. (Hence, A2 = ZE(X2:2 —
X1:2))

e For n = 3, X33 — 2X53 + Xi1.3 measures skewness. (i.e.,
X33 — Xo3 = Xo3 — X1:3). (Hence, A3 = tE (X33 —2X23+
X1:3))

And in general,

A=t S (c1y T D!

=0 j!(?“—j—l)!

E(Xr—jir)



For more on L-Moments

Hosking JRM and Wallis JR. 1997. Regional Frequency
Analysis: An Approach Based on L-Moments. Cambridge
University Press.
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