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Overview of GEV/PDS: Review

Extremal Types Theorem: X1, . . . , Xn random sample from
any distribution.

Pr{
max{X1, . . . , Xn} − bn

an

≤ z} −→ G(z) as n −→∞

where G(z) is one of three types of distributions.

I. (Gumbel) G(z) = exp{− exp
[
−

(
z−b
a

)]
}, −∞ < z < ∞.

II. (Fréchet) G(z) = exp{−
(

z−b
a

)−α
}, z > b and 0 otherwise.

III. (Weibull) exp{−
[
−

(
z−b
a

)α]
}, z < b and 1 otherwise.

(where a > 0, α > 0 and b are parameters).
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Overview of GEV/PDS: Review

Extremal Types Theorem

The above three distributions can be combined into a single
family of distributions.

G(z) = exp{−
[
1 + ξ

(
z − µ

σ

)]−1/ξ

}

G is called the generalized extreme value distribution (GEV).

Three parameters: location (µ), scale (σ) and shape (ξ).

These papers use ξ for location, α for scale and κ for shape
Also, κ is parametrized differently. Specifically, κ = −ξ from
the above representation.

4



Overview of GEV/PDS: Theoretical properties of
parameters
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Overview of GEV/PDS: Theoretical properties of
parameters

1. The GEV is only defined when 1 + ξ
(

z−µ
σ

)
> 0.

2. Range of data is dependent upon unkown parameters!
Hence, regularity conditions for MLE do not necessarily
hold.

(a) For ξ > 0, µ− σ/ξ ≤ x.

(b) For ξ < 0, x ≤ µ− σ/ξ.

3. For ξ ≥ −0.5 desirable asymptotic properties of efficiency
and normality of MLE’s hold.

4. If ξ < −1, the density −→∞ as µ−σ/ξ approach the largest
observation.

5. Even under 2a above, the MLE can perform satisfactorily
if the likelihood is modified; but does not help for small
samples.
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Overview of GEV/PDS: Estimation methods

• Hosking et al. (1985) showed L-moments to be superior
for GEV to MLE in terms of bias and variance for small
sample sizes (n = 15 to n = 100).

• Madsen et al. show MOM quantile estimators have smaller
RMSE for −0.30 < ξ < 0.25 than both LM and MLE when
estimating the 100-year event with n ∈ [10,50]; with MLE
preferable for ξ < −0.3 and n ≥ 50.

• It is straightforward to incorporate censored data (covari-
ates) into MLE; but not with LM/MOM.
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Overview of GEV/PDS: Generalized Pareto Dis-
tribution (GPD)

Exceedance Over Threshold Model
For X random (with cdf F ) and a (large) threshold u

Pr{X > x|X > u} =
1− F (x)

1− F (u)

Then for x > u (u large), the GPD is given by

1− F (x)

1− F (u)
≈ [1 +

ξ

σ
(x− u)]−1/ξ
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Overview of GEV/PDS: Transformations between
GEV/GPD (2001P)

(Here, taken from extRemes toolkit tutorial using the ξ = −κ

parameterization of GEV).

logλ = −
1

ξ
log{1 + ξ

u− µ

σ
}

σ∗ = σ + ξ(u− µ)

etc...
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Small sample simulation
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Small sample simulation

11



GMLE

• Coles and Dixon (1999)

Lpen(µ, σ, ξ) = L(µ, σ, ξ)× P (ξ),

where

P (ξ) = Iξ≤01 + I0<ξ<1 exp{−λ(
1

1− ξ
− 1)α}

• Martins and Stedinger (2000, 2001)

GL(µ, σ, ξ|x) = L(µ, σ, ξ)× π(ξ),

where π(ξ) is a Beta prior.
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GMLE

As sample size increases, information in the likelihood should
dominate the GMLE estimator, so that MLE and GMLE
asymptotically have the same desirable properties.
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Results

(2000P)

• For ξ ≥ 0, GMLE does better than MOM and LM at
estimating quantiles.

• If ξ < 0, then a more appropriate prior should be used with
GMLE.

• For ξ = 0.10, two-parameter GEV/MLE is better than
three-parameter GEV/GMLE (in a narrow region).

(2001P)

• For ξ ≥ 0, GMLE performs about the same for both PDS
and AMS; superior to other quantile estimators.

• MOM is just as good for ξ = 0 and better for ξ ≤ 0.

• Two-parameter PDS/exponential-Poisson MLE is better
than three-parameter PDS/GP GMLE in a narrow region.
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That’s all! Unless you want more.

15



Estimation methods

• Maximum Likelihood Estimation (MLE)

• Method of L Moments

• Bayesian estimation
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MLE

Assuming Z1, . . . , Zm are iid random variables that follow the
GEV distribution the log-likelihood is given by the following.

`(µ, σ, ξ) = −m logσ −
(
1 + 1

ξ

) ∑m
i=1 log

[
1 + ξ

(
zi−µ

σ

)]
−

∑m
i=1

[
1 + ξ

(
zi−µ

σ

)]−1/ξ
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L Moments

Probability Weighted Moments (PWM)

Mp,r,s = E [Xp{F (X)}r{1− F (X)}s]

L-moments are based on the special cases αr = M1,0,r and
βr = M1,r,0. Specifically, let x(u) be the quantile function for
a distribution, then:

αr =
∫ 1

0
x(u)(1− u)rdu

βr =
∫ 1

0
x(u)urdu

Compare to ordinary moments: E(Xr) =
∫ 1
0 {x(u)}rdu.
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L-moments

Much more to it, but the moments derived in the paper come
from:

• λ1 = α0 = β0,

• λ2 = α0 − 2α1 = 2β1 − β0 and

• λ3 = α0 − 6α1 + 6α2 = 6β2 − 6β1 + β0

More generally

λr =
∫ 1

0
x(u)

r−1∑
k=0

(−1)r−k−1(+k − 1)!

(k!)2(r − k − 1)!
du
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Alternatively

• For n = 1, X1:1 estimates location. If distribution is shifted
to larger values, then X1:1 is expected to be larger. (Hence,
λ1 = E(X1:1))

• For n = 2, X2:2−X1:1 estimates scale (dispersion). If dist’n
is tightly bunched, small value. (Hence, λ2 = 1

2
E(X2:2 −

X1:2))

• For n = 3, X3:3 − 2X2:3 + X1:3 measures skewness. (i.e.,
X3:3 −X2:3 ≈ X2:3 −X1:3). (Hence, λ3 = 1

3
E(X3:3 − 2X2:3 +

X1:3))

And in general,

λr = r−1
r−1∑
j=0

(−1)j (r − 1)!

j!(r − j − 1)!
E(Xr−j:r)
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For more on L-Moments

Hosking JRM and Wallis JR. 1997. Regional Frequency
Analysis: An Approach Based on L-Moments. Cambridge
University Press.
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