

Eric Gilleland Research Applications Laboratory National Center for Atmospheric Research

- Interest in making inferences about large, rare, extreme phenomena.
- Given certain properties (e.g., independence), extremes follow EVD.
- Tricky because atmospheric data are often spatially (and temporally) correlated, even in their extreme values.

- Point Data
 - Air Quality Monitoring (e.g., Ozone concentrations)
 - METARs stations (ground-based weather observations)
 - Radiosondes (weather balloons, airplanes)
- Gridded Data

— . . .

- Global NCAR/NCEP Reanalysis

All available observational data are synthesized with a static data assimilation process.

- Remote sensing (e.g., satellite)
- Model Output (e.g., Weather/Climate models)

• R:

- statistical programming language
 http://www.r-project.org
- Free software environment for statistical computing and graphics.
- Compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.

Software

• extRemes:

 Weather and Climate Applications of Extreme Value Statistics

Software

- spatial extension to R package extRemes (in dev)
- Many other extreme-value software packages (e.g., Stephenson and Gilleland, 2005)
- Many spatial statistics package too (e.g., in R: fields, sp, ...)

• Air Quality Standards

High values of a spatial process (e.g., "... if the three-year average of the fourth-highest maximum daily 8-hour ozone concentration exceeds 80 ppb ...")What is the coverage at an unobserved location?

• Severe Weather and Climate Change

Will the frequency and intensity of severe weather increase in the future?

Daily Ozone Concentrations

- Number of years: 5 ozone "seasons" (1995 1999)
- Ozone "season": 184 days (April October)
- Daily values: Maximum of 8-hr block averages (ppb)
- Distribution: Continuous, Normal
- Spatial Locations: 72 stations centered on North Carolina

NAAQS for Ground-level Ozone

In 1997, the U.S. EPA changed the NAAQS for regulating ground-level ozone levels to one based on the *fourth-highest daily maximum 8-hr. averages (FHDA)* of an ozone season (184 days). Compliance is met when the FHDA over a three year (season) period is below 84 ppb.

1997 FHDA Observed Data

North Carolina

Three sites

Spatial Inference for the Standard

What can be deduced about FHDA at unobserved locations?

Characterize a spatial field of fourth-highest order statistics

- Distribution: Is it Gaussian (extreme value)?
- What does the covariance structure look like?

Strategies Using Spatial Extension of extRemes

- Spatial and Space-Time Approaches (e.g., Gilleland and Nychka, 2005)
 - Daily Model Approach
 - Seasonal Model Approach (and simple thin plate spline)
 - Comparison of Daily and Seasonal Models
- Spatial Extreme Value Model (e.g., Gilleland et al, 2006)

Other approaches

- Alter loss function: (e.g., Craigmile et al., 2006a)
- EVD using Bayesian hierarchical model: (e.g., Cooley *et al, in press*, 2006a)
- Madograms: (e.g., Cooley et al, 2006b)

Space-Time model

One strategy is to model daily ozone using a space-time model (spatial AR(1)) to determine the distribution of the standard.

Simulation

Use Monte Carlo simulations to generate samples of the standard using the space-time model. That is, simulate a season of ozone data using the space-time model and take the fourth-highest of them. Do this several times to obtain a sample from the FHDA distribution.

The Daily Model

Let $Y(\mathbf{x}, t)$ denote the daily 8-hr max ozone for m sites over n time points. Consider,

$$Y(\mathbf{x},t) = \mu(\mathbf{x},t) + \sigma(\mathbf{x})u(\mathbf{x},t),$$

where $u(\mathbf{x},t)$ is a de-seasonalized zero mean, unit variance space-time process.

Explicitly modeling daily observations spatially in order to obtain simulated samples of FHDA

Space-Time Process

After de-seasonalizing/standardizing, for each spatial site, x, fit an AR(1) model over time for $u(\mathbf{x}, t)$.

$$u(\mathbf{x},t) = \rho(\mathbf{x})u(\mathbf{x},t-1) + \varepsilon(\mathbf{x},t)$$

Leads to the spatio-temporal covariance

$$\begin{aligned} \mathsf{Cov}(u(\mathbf{x},t),u(\mathbf{x}',t-\tau)) &= \\ \frac{(\rho(\mathbf{x}))^{\tau}\sqrt{1-\rho^2(\mathbf{x})}\sqrt{1-\rho^2(\mathbf{x}')}}{1-\rho(\mathbf{x})\rho(\mathbf{x}')} \cdot \psi(d(\mathbf{x},\mathbf{x}')), \end{aligned}$$
 for $\tau \geq 0.$

If $\rho(\mathbf{x}) = \rho$, then $Cov(u(\mathbf{x}, t), u(\mathbf{x}', t - \tau))$ simplifies to

 $ho^{ au} \cdot \psi(d(\mathbf{x},\mathbf{x}'))$

Correlogram of AR(1) shocks, $\hat{\varepsilon}(\mathbf{x},t)$

Space-Time Process: Correlogram of AR(1) shocks Correlogram plots for spatial shocks suggest a mixture of exponentials covariance model is appropriate. Let $h = d(\mathbf{x}, \mathbf{x}')$,

$$\psi(h) = \alpha e^{-\mathbf{h}/\theta_1} + (1-\alpha)e^{-\mathbf{h}/\theta_2}$$

Fitted values are $\hat{\alpha} \approx 0.13$ (±0.02), $\hat{\theta}_1 \approx 11$ miles (±3.37 miles) and $\hat{\theta}_2 \approx 272$ miles (±16.89 miles).

000	X Initial parameter estimates					
alpha	range1	range2		Initial Parameter Estimates		
		ок	Cancel	Help		

The Goal

Spatial inference for the NAAQS for ground-level ozone.

That is, what can be deduced about FHDA at unobserved locations?

Want to sample from [FHDA|daily data].

Algorithm to predict FHDA at unobserved location, x_0 .

1. Simulate data for an entire ozone season

Algorithm to predict FHDA at unobserved location, x_0 .

- 1. Simulate data for an entire ozone season
 - (a) Interpolate spatially from u(x, 1) to get $\hat{u}(x_0, 1)$.
 - (b) Also interpolate spatially to get $\hat{\rho}(\mathbf{x}_0)$, $\hat{\mu}(\mathbf{x}_0, \cdot)$ and $\hat{\sigma}(\mathbf{x}_0)$.
 - (c) Sample shocks at time t from $[\varepsilon(\mathbf{x}_0, t)|\varepsilon(\mathbf{x}, t)]$.
 - (d) Propagate AR(1) model.
 - (e) Back transform $\hat{Y}(\mathbf{x}_0, t) = \hat{u}(\mathbf{x}_0, t)\hat{\sigma}(\mathbf{x}_0) + \hat{\mu}(\mathbf{x}_0, t)$

Algorithm to predict FHDA at unobserved location, x_0 .

- 1. Simulate data for an entire ozone season.
- 2. Take fourth-highest value from Step 1.
- 3. Repeat Steps 1 and 2 many times to get a sample of FHDA at unobserved location.

Distribution for the AR(1) shocks $[\varepsilon(\mathbf{x}_0, t)|\varepsilon(\mathbf{x}, t)]$ (Step 1c) given by Gau(M, Σ)

with

$$\mathbf{M} = \mathbf{k}'(\mathbf{x}_0, \mathbf{x}) \mathbf{k}^{-1}(\mathbf{x}, \mathbf{x}) \varepsilon(\mathbf{x}, t)$$

and

$$\Sigma = \mathbf{k}'(\mathbf{x}_0, \mathbf{x}_0) - \mathbf{k}'(\mathbf{x}_0, \mathbf{x})\mathbf{k}^{-1}(\mathbf{x}, \mathbf{x})\mathbf{k}(\mathbf{x}, \mathbf{x}_0),$$

where $\mathbf{k}(\mathbf{x}, \mathbf{y}) = [\psi(\mathbf{x}_i, \mathbf{y}_j)]$ the covariance matrix for two sets of spatial locations.

Results of predicting FHDA spatially with daily model (1997)

Comparing the Daily and Seasonal models

Comparing the Daily and Seasonal models

- Simplicity of the seasonal model approach is desirable.
- Daily model yields consistently lower MSE from leave-oneout cross validation.
- Daily model can account for "complicated" spatial features without resorting to non-standard techniques.
- Daily MPSE is consistently too optimistic.

Another Approach: Spatial Extremes

Given a spatial process, $Z(\mathbf{x})$, what can be said about $\Pr\{Z(\mathbf{x}) > z\}$

when z is large?

Spatial Extremes

Given a spatial process, $Z(\mathbf{x})$, what can be said about $\Pr\{Z(\mathbf{x}) > z\}$

when z is large?

Note:

This is not about dependence between $Z(\mathbf{x})$ and $Z(\mathbf{x}')$ —this is another topic!

Spatial Extremes

Given a spatial process, $Z(\mathbf{x})$, what can be said about $\Pr\{Z(\mathbf{x}) > z\}$

when z is large?

Note:

This is not about dependence between $Z(\mathbf{x})$ and $Z(\mathbf{x}')$ —this is another topic!

Spatial structure on parameters of distribution (not FHDA).

Extreme Value Distributions: GPD

For a (large) threshold u, the GPD is given by

$$\Pr\{X > x | X > u\} \approx [1 + \frac{\xi}{\sigma}(x - u)]^{-1/\xi}$$

Observation Model:

 $y(\mathbf{x},t)$ surface ozone at location \mathbf{x} and time t

$$[y(\mathbf{x},t)|\sigma(\mathbf{x}),\xi(\mathbf{x}),u,y(\mathbf{x},t)>u]$$

Spatial Process Model:

 $[\sigma(\mathbf{x}), \xi(\mathbf{x}), u | \boldsymbol{\theta}]$

Prior for hyperparameters:

[heta]

Assume extreme observations to be *conditionally independent* so that the joint pdf for the data and parameters is

$$\prod_{i,t} [y(\mathbf{x}_i, t) | \sigma(\mathbf{x}), \xi(\mathbf{x}), u, y(\mathbf{x}_i, t) > u] \ [\sigma(\mathbf{x}), \xi(\mathbf{x}), u | \boldsymbol{\theta}] \ [\boldsymbol{\theta}]$$

t indexes time and i stations.

Shortcuts and Assumptions

- Assume threshold, *u*, fixed.
- $\xi(\mathbf{x}) = \xi$ (i.e., shape is constant over space). Justified by univariate fits.
- Assume $\sigma(\mathbf{x})$ is a Gaussian process with isotropic Matérn covariance function.
- Fix Matérn smoothness parameter at $\nu = 2$, and let the range be very large-leaving only λ (ratio of variances of nugget and sill).

$$\sigma(\mathbf{x}) = P(\mathbf{x}) + e(\mathbf{x}) + \eta(\mathbf{x})$$

with P a linear function of space, e a smooth spatial process, and η white noise (nugget).

 λ is the only hyper-parameter

- As $\lambda \longrightarrow \infty$, the posterior surface tends toward just the linear function.
- As $\lambda \longrightarrow 0$, the posterior surface will fit the data more closely.

(a) lambda=0

(b) lambda= 1e-6

(c) lambda= 1e–4

(d) lambda= 1e-2

log of joint distribution

$$\sum_{i=1}^{n} \ell_{\mathsf{GPD}}(y(\mathbf{x}_{i}, t), \sigma(\mathbf{x}_{i}), \xi) - \lambda(\boldsymbol{\sigma} - \mathbf{X}\boldsymbol{\beta})^{T} K^{-1}(\boldsymbol{\sigma} - \mathbf{X}\boldsymbol{\beta})/2 - \log(|\lambda K|) + C$$

K is the covariance for the prior on σ at the observations.

This is a penalized likelihood:

The penalty on σ results from the covariance and smoothing parameter λ .

Spatial extension for extRemes

Spatial extension for extRemes

[1] "NCozmax8 fit to Generalised Pareto Distribution (GPD) at individual locations

(grid points)."

	scale	shape
N	72.000000	72.000000
mean	16.371782	-0.291973
Std.Dev.	2.902333	0.073854
min	10.355406	-0.490141
Q1	14.347936	-0.346752
median	16.259529	-0.298820
Q3	17.984638	-0.231408
max	23.982931	-0.152946
missing values	0.000000	0.00000

Probability of exceeding the standard

(b)

Conclusions for Ozone NAAQS

- Simplicity of the seasonal model approach is desirable.
- Daily model yields consistently lower MSE from leave-oneout cross validation.
- Daily model can account for "complicated" spatial features without resorting to non-standard techniques.
- Daily MPSE is consistently too optimistic.
- Extreme value models good alternative to modelling the tail of distributions.
- Two very different approaches yield similar results

Large-scale Indicators for Severe Weather

Severe weather typically on fine scales

Historical records limited

Weak relationship with larger-scale phenomena

CAPE $(J/kg) \times$ shear (m/s) found to be indicative of conducive environments for severe weather

(e.g., Brooks et al, 2003; Pocernic et al, in prep)

Global NCAR/NCEP Reanalysis Data

- All available observational data are synthesized with a static data assimilation process.
- \bullet Resolution $\approx 1.875^{\it o}$ longitude by 1.915^{\it o} latitude
- 17 856 grid point locations (192 \times 94 grid)
- Temporal spacing every 6 hours
- 1958 through 1999 (42 years)
- Convective available potential energy (CAPE, J/kg)
- Magnitude of vector difference between surface and 6-km wind (shear, m/s)
- Both CAPE and shear ≥ 0 (Lots of zeros!)

Global NCAR/NCEP Reanalysis Data

Upper quartiles for (42-yr) annual maximum CAPE (J/kg) \times shear (m/s)

Extreme-value theory

- Bivariate extremes difficult because CAPE and shear tend not to be large together
- Nonstationary spatial structure

Initial analysis: Fit GEV to individual grid points without worrying about spatial structure.

 $\bigcirc \bigcirc \bigcirc \boxtimes$ X Fit data to GEV independently for individual locations

	Data Object	NCobj Csmax.obj dd spatmaxObj spatmaxtrendObj			
Parameter	Covariate Exp	ressions (see Help for more information)			
mu się xi	I = I = = covariate(:	s) list object			
Method BFGS quasi-Newton					
	Sav OK	Ve As CsmaxGEV1			

Generalized Extreme-Value (GEV) distribution

The generalized Extreme Value Distribution (GEV)

$$F_{\text{GEV}}(z) = \exp\{-(1 + \frac{\xi}{\sigma}(z - \mu))^{-1/\xi}_{+}\}$$

Parameters: Location (μ) , Scale (σ) and Shape (ξ) .

Notes about the GEV

- $\xi < 0$, Weibull, upper end-point at $\mu \frac{\sigma}{\xi}$
- $\xi > 0$, Fréchet, lower end-point at $\mu \frac{\sigma}{\xi}$ (heavy tail)
- $\xi = 0$, Gumbel (light tail)
- $\Pr\{\max\{X_1,\ldots,X_n\} < z\} \approx F_{GEV}(z)$

Preliminary Analysis: Location Parameter

Preliminary Analysis: Scale Parameter

Preliminary Analysis: Shape Parameter

Preliminary Analysis

Trend in location parameter: $\mu(\text{year}) = \mu_0 + \mu_1 \cdot \text{year}$

Preliminary Analysis

Trend in location parameter: $\mu(\text{year}) = \mu_0 + \mu_1 \cdot \text{year}$

Trends in counts of CAPE*Shear > 10,000 9 = 0.05 9 = 0.05 9 = 0.05 9 = 0.05 9 = 0.05 -0.05 -0.05 -0.10

Trends in counts of CAPE*Shear > 20,000

Fig. from Pocernich et al (in prep)

Significance?

20-year return level differences for *linear/quadratic* trend $\mu(\text{year}) = \begin{cases} \mu_0 + \mu_1 \cdot \text{year} \\ \mu_0 + \mu_1 \cdot \text{year} + \mu_2 \cdot \text{year}^2 \end{cases}$

 $z_{1975} - z_{1962}$

 $z_{1989} - z_{1962}$

Likelihood-ratio test \longrightarrow Model fit

Also want to know about uncertainty for *return level differences*

- δ method (shorter return periods)
- profile likelihood (longer return periods) not realistic for so many grid points
- Bootstrap
- Bayesian hierarchical model

Developmental version of the spatial extension of extRemes available at:

http://www.isse.ucar.edu/extremevalues/evtk.html

Ozone data available at:

http://www.image.ucar.edu/GSP/Data/03.shtml

Email: EricG @ ucar.edu

References

- Brooks HE, JW Lee, and JP Craven, 2003: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. *Atmos. Res.*, **67-8**:73–94.
- Cooley D, D Nychka, P Naveau. (*in press*). Bayesian Spatial Modeling of Extreme Precipitation Return Levels. JASA.
- Cooley D, P Naveau, V Jomelli, A Rabatel, D Grancher, 2006a. A Bayesian hierarchical extreme value model for lichenometry. *Environmetrics*, **17**(6):555–574.
- Cooley D, P Naveau, P Poncet, 2006b. Variograms for max-stable random fields. In *Statistics for Dependent Data*: Springer Lecture Notes in Statistics No. 187.
- Craigmile PF, N Cressie, TJ Santner, and Y Rao, 2006. A Loss function approach to identifying environmental exceedances. *Extremes*, **8**(3):143–159.
- Gilleland E, D Nychka, and U Schneider, 2006. Spatial models for the distribution of extremes, *Computational Statistics: Hierarchical Bayes and MCMC Methods in the Environmental Sciences*, Edited by J.S. Clark and A. Gelfand. Oxford University Press.
- Gilleland E and D Nychka, 2005. Statistical models for monitoring and regulating ground-level ozone. *Environmetrics* **16**: 535–546 doi: 10.1002/env.720
- Pocernich M, E Gilleland, HE Brooks, and BG Brown, in prep. Identifying patterns and trends in severe storm environments using Re-analysis Data. *Manuscript in Preparation*
- Stephenson A and E Gilleland, 2005. Software for the Analysis of Extreme Events: The Current State and Future Directions, *Extremes* 8:87-109.