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Extremes

e Interest in making inferences about large, rare, extreme
phenomena.

e Given certain properties (e.g., independence), extremes
follow EVD.

e Tricky because atmospheric data are often spatially (and
temporally) correlated, even in their extreme values.



Atmospheric Data

e Point Data

— Air Quality Monitoring (e.g., Ozone concentrations)

— Radiosondes (weather balloons, airplanes)

e Gridded Data

— Global NCAR/NCEP Reanalysis
All available observational data are synthesized with a
static data assimilation process.



Software

o R:
— statistical programming language
http://www.r-project.org
— Free software environment for statistical computing and
graphics.

— Compiles and runs on a wide variety of UNIX platforms,
Windows and MacOS.



Software

e extRemes:

— Weather and Climate Applications of
Extreme Value Statistics
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Software

e spatial extension to R package extRemes (in dev)

e Many other extreme-value software packages
(e.g., Stephenson and Gilleland, 2005)

e Many spatial statistics package too
(e.g., in R: fields, sp, ...)



Questions

e Air Quality Standards

High values of a spatial process (e.g., “... if the three-
year average of the fourth-highest maximum daily 8-
hour ozone concentration exceeds 80 ppb ...")

What is the coverage at an unobserved location?
e Severe Weather and Climate Change

Will the frequency and intensity of severe weather increase
in the future?



Daily Ozone Concentrations

e Number of years: 5 ozone ‘“seasons’ (1995 - 1999)
e Ozone ‘“season’: 184 days (April - October)

e Daily values: Maximum of 8-hr block averages (ppb)
e Distribution: Continuous, Normal

e Spatial Locations: 72 stations centered on North Carolina
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NAAQS for Ground-level Ozone

In 1997, the U.S. EPA changed the NAAQS for regulating
ground-level ozone levels to one based on the fourth-highest
daily maximum 8-hr. averages (FHDA) of an ozone season
(184 days). Compliance is met when the FHDA over a three
year (season) period is below 84 ppb.
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1997 FHDA Observed Data
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Goal

Spatial Inference for the Standard
What can be deduced about FHDA at unobserved |locations?

Characterize a spatial field of fourth-highest order statistics

e Distribution: Is it Gaussian (extreme value)?

e \What does the covariance structure look like?



Some Strategies

Strategies Using Spatial Extension of extRemes

e Spatial and Space-Time Approaches (e.g., Gilleland and
Nychka, 2005)

— Daily Model Approach
— Seasonal Model Approach (and simple thin plate spline)
— Comparison of Daily and Seasonal Models

e Spatial Extreme Value Model (e.g., Gilleland et al, 2006)

Other approaches
e Alter loss function: (e.g., Craigmile et al., 2006a)

e EVD using Bayesian hierarchical model: (e.g., Cooley et
al, in press, 2006a)

e Madograms: (e.g., Cooley et al, 2006b)



Space-Time Approach: Daily Model

Space-Time model

One strategy is to model daily ozone using a space-time
model (spatial AR(1)) to determine the distribution of the
standard.

Simulation

Use Monte Carlo simulations to generate samples of the stan-
dard using the space-time model. That is, simulate a sea-
son of ozone data using the space-time model and take the
fourth-highest of them. Do this several times to obtain a
sample from the FHDA distribution.



Space-Time Approach: Daily Model

The Daily Model
Let Y(x,t) denote the daily 8-hr max ozone for m sites over

n time points. Consider,

Y(x,1) = p(x,t) + o(x)u(x,t),

where u(x,t) is a de-seasonalized zero mean, unit variance
Space-time process.

Explicitly modeling daily observations spatially in order to
obtain simulated samples of FHDA



Space-Time Approach: Daily Model

Space-Time Process
After de-seasonalizing/standardizing, for each spatial site, x,
fit an AR(1) model over time for u(x,t).

uw(x,t) = p(x)u(x,t — 1) + e(x,1t)

X S_r_:_ha.tial Extremes
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Space-Time Approach: Daily Model

LLeads to the spatio-temporal covariance

Cov(u(x,t),u(x',t — 7)) =

(P71 = p2(x)y/1 = PP(X)
1 —p(x)p(x')

- (d(x,x)),
for > 0.

If p(x) = p, then Cov(u(x,t),u(x’,t — 7)) simplifies to

p" - P(d(x,x))



Space-Time Approach: Daily Model

s e Correlogram of AR(1) shocks, £(x,t)
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Space-Time Approach: Daily Model

Space-Time Process: Correlogram of AR(1) shocks
Correlogram plots for spatial shocks suggest a

mixture of exponentials covariance model is appropriate.
Let h = d(x,x’),

Y(h) = ae ™0 4 (1 — a)e /2

Fitted values are & ~ 0.13 (£+0.02), 0; ~ 11 miles (£+3.37
miles) and 0 ~ 272 miles (£16.89 miles).

% Initial parameter estimates
alpha rangel rangeZ Initial Parameter Estimates

oK Cancel Help




Space-Time Approach: Daily Model

The Goal
Spatial inference for the NAAQS for ground-level ozone.

That is, what can be deduced about FHDA at unobserved
locations?

Want to sample from [FHDA|daily data].



Space-Time Approach: Daily Model

Algorithm to predict FHDA at unobserved location, Xo.

1. Simulate data for an entire ozone season

|
| % Predict functional of data using spatial AR(1) model onto a grid

I

NCobj | ttgrid tt0
| spatmaxobj MCozmaxs.xygrid ! i1
| Data Object |spatmaxtrendOhj Prediciton Grd [recgid ' Shocks correlogram [tt2
testincObj recqrid? Tomoko Cov
recytidz HCcgram

Humber of Simulations |760

Hame of subset vector

Mame of vector giving time points
MC1937

Hame of functional to apply to simulations
i rM.order

Arguments to functional {use the form: argl=value, argZ=value}
M =4

{ ¥ Plot results

verhose
Save As siml1d

0K Cancel Help




Space-Time Approach: Daily Model

Algorithm to predict FHDA at unobserved location, Xo.

1. Simulate data for an entire ozone season

(a) Interpolate spatially from wu(x,1) to get u(xo, 1).

(b) Also interpolate spatially to get p(xg), u(xo,-) and o(xg).
(c) Sample shocks at time ¢t from [e(xo,t)|e(x,t)].

(d) Propagate AR(1) model.

(e) Back transform Y (xo,t) = u(xo,t)5(x0) + fi(xo0,t)



Space-Time Approach: Daily Model

Algorithm to predict FHDA at unobserved location, Xo.
1. Simulate data for an entire ozone season.

2. Take fourth-highest value from Step 1.

3. Repeat Steps 1 and 2 many times to get a sample of
FHDA at unobserved location.



Space-Time Approach: Daily Model

Distribution for the AR(1) shocks
[e(x0,t)]e(x,t)] (Step 1c) given by

Gau(M, X))
with
M = k'(x0,x)k (%, x)e(x,t)

and
d = k/(Xo,Xo) — k,(XO,X)k_l(Xa X)k(X7 XO))

where k(x,y) = [¢¥(xi,¥;)] the covariance matrix for two
sets of spatial locations.



Space-Time Approach: Daily Model

Results of predicting FHDA spatially with daily model (1997)




Comparing the Daily and Seasonal models

Predicted FHDA (Daily) MPSE (Daily)




Comparing the Daily and Seasonal models

e Simplicity of the seasonal model approach is desirable.

e Daily model yields consistently lower MSE from leave-one-
out cross validation.

e Daily model can account for “complicated” spatial fea-
tures without resorting to non-standard techniques.

e Daily MPSE is consistently too optimistic.



Another Approach: Spatial Extremes

Given a spatial process, Z(x), what can be said about
Pr{Z(x) > z}

when z is large?



Spatial Extremes

Given a spatial process, Z(x), what can be said about

Pr{Z(x) > z}

when z is large?

Note:

This is not about dependence between Z(x) and Z(x')—this
IS another topic!



Spatial Extremes

Given a spatial process, Z(x), what can be said about
Pr{Z(x) > z}

when z is large?

Note:
This is not about dependence between Z(x) and Z(x')—this
IS another topic!

Spatial structure on parameters of distribution (not FHDA).



Extreme Value Distributions: GPD
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For a (large) threshold u, the GPD is given by

Pr{X > x| X >u} ~[1+ %(w —w)] Y



A Hierarchical Spatial Model

Observation Model.
y(x,t) surface ozone at location x and time ¢

[y(x,t)]o(x),£(x), u, y(x,t) > u]
Spatial Process Model:

[o(x),£(x), u|6]

Prior for hyperparameters:

6]



A Hierarchical Spatial Model

Assume extreme observations to be conditionally independent
so that the joint pdf for the data and parameters is

H[y(Xi,t)‘O'(X),g(X),’U,,y(XZ',t) > U’] [O'(X),&(X),U|0] [H]

t indexes time and ¢ stations.



Shortcuts and Assumptions

e Assume threshold, u, fixed.

o {(x) =& (i.e., shape is constant over space). Justified by
univariate fits.

e Assume o(x) is a Gaussian process with isotropic Matérn
covariance function.

e Fix Matérn smoothness parameter at v = 2, and let the
range be very large—leaving only M\ (ratio of variances of
nugget and sill).



More on o(x)

o(x) = P(x) + e(x) + n(x)
with P a linear function of space, e a smooth spatial process,
and n white noise (nugget).
A is the only hyper-parameter

e AS A\ — 00, the posterior surface tends toward just the
linear function.

e As A\ — 0O, the posterior surface will fit the data more
closely.



(a) lambda=0 (b) lambda= 1e-6

(c) lambda=1e-4 (d) lambda= 1e-2




log of joint distribution

> tapp (e, D, 0(x),6)-

Mo —XB)' 'K~ (o —XB)/2 —log(|AK|) + C

K is the covariance for the prior on o at the observations.

This is a penalized likelihood.
The penalty on o results from the covariance and smoothing
parameter \.



Spatial extension for extRemes

% Fit GP parameters at individual locations

NCobj
spatmazx Obj
Data Object spatmaxtrendObj
testinc Obj
Threshold
¥ constant
vector
matr=

Value or vectorfimatrix object name: |60
Method BFGS guasi-Newton

Save As (NCopd

oK Cancel Help




Spatial extension for extRemes

[1] "NCozmax8 fit to Generalised Pareto Distribution (GPD) at individual locations

(grid points)."

scale shape
N 72.000000 72.000000
mean 16.371782 -0.291973
Std.Dev. 2.902333 0.073854
min 10.355406 -0.490141
Q1 14.347936 -0.346752
median 16.259529 -0.298820
Q3 17.984638 -0.231408
max 23.982931 -0.152946

missing values 0.000000 0.000000



Probability of exceeding the standard

(a) (b)




Conclusions for Ozone NAAQS

e Simplicity of the seasonal model approach is desirable.

e Daily model yields consistently lower MSE from leave-one-
out cross validation.

e Daily model can account for “complicated” spatial fea-
tures without resorting to non-standard techniques.

e Daily MPSE is consistently too optimistic.

e Extreme value models good alternative to modelling the
tail of distributions.

e Two very different approaches vield similar results



lLarge-scale Indicators for Severe Weather

Severe weather
typically on
fine scales

Historical records
limited

¥ Weak relationship
% with larger-scale
phenomena

CAPE (J/kg) x shear (m/s) found to be indicative of
conducive environments for severe weather

(e.g., Brooks et al, 2003; Pocernic et al, in prep)



Global NCAR/NCEP Reanalysis Data

e All available observational data are synthesized with a
static data assimilation process.

e Resolution =~ 1.875° longitude by 1.915° |latitude

e 17 856 grid point locations (192 x 94 grid)

e [Temporal spacing every 6 hours

e 1958 through 1999 (42 years)

e Convective available potential energy (CAPE, J/kg)

e Magnitude of vector difference between surface and 6-km
wind (shear, m/s)

e Both CAPE and shear > 0 (Lots of zeros!)



Global NCAR/NCEP Reanalysis Data

Upper quartiles for (42-yr) annual maximum
CAPE (J/kg) x shear (m/s)

) O O [X] Plot Data Percentiles

|csmax.obj |

Data Object J

color scheme
% default
-~ topographical
heat
W
ercentile I?E
P | .~ rainhow

~ terrain

o CM
color levels IZEE

_| Enter zlims for retum levels

lower imit

—

upper limit
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Preliminary Analysis

Extreme-value theory

e Bivariate extremes difficult because CAPE and shear tend
not to be large together

e Nonstationary spatial structure

Initial analysis: Fit GEV to individual grid points without
v_errying about spatial structure.

) x| Fit data to GEV independently for individual locations

MCobj
csmax.ohj

Data Object |dd '
spatmaxOhj
spatmaxtrend Obj

Parameter Covariate Expressions (see Help for more information)
mu =
sl =
Hi=

covanate(s) list object
Method |BFGS guasi-Newton

Save As comaxGEW1

OK Cancel Help




Generalized Extreme-Value (GEV) distribution

The generalized Extreme Value Distribution (GEV)

Fgev(z) = exp{—-(1+ g(z — W)
Parameters: Location (i), Scale (o) and Shape (£).

Notes about the GEV

e £ <0, Weibull, upper end-point at u —%
e £ > 0, Fréchet, lower end-point at u —% (heavy tail)
e £ = 0, Gumbel (light tail)

° Pr{max{Xl, ce ,Xn} < Z} ~ FGE\/(Z)



Preliminary Analysis: Location Parameter
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Preliminary Analysis: Scale Parameter
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Preliminary Analysis: Shape Parameter
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Preliminary Analysis

Trend in location parameter: u(year) = py + p1 - year
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Preliminary Analysis

Trend in location parameter: p(year) = po + pq - year
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Preliminary Results

Trends in counts of CAPE*Shear > 10,000
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Preliminary Results

Significance?

Significant +

Not Significant

Significant —




Preliminary Results

Likelihood-ratio tests for
linear trend quadratic trend

p(year) = po + pa(year)  p(year) = po + piyear + poyear?

f T T T T 1 [ I I I
0o ne 0.4 0.6 0.

p-value p-value



Preliminary Results

20-year return level differences for linear/quadratic trend

po + w1 - year
ear) =
p(vear) {uo+u1 -year + puo - year?

<1975 — <1962 <1989 — <1962

T T T T T T T T T T T T
-22170 -16403 -10515 -4634 1251 F135 -22170 -16403 -10515 -4634 1251 7135



Uncertainty

Likelihood-ratio test — Model fit

Also want to know about uncertainty for
return level differences

e Y method (shorter return periods)

e profile likelihood (longer return periods)
not realistic for so many grid points

e Bootstrap

e Bayesian hierarchical model



Tanke woll

Developmental version of the spatial extension of extRemes
available at:

http://www.isse.ucar.edu/extremevalues/evtk.html

Ozone data available at:

http://www.image.ucar.edu/GSP/Data/03.shtml

Email: EricG @ ucar.edu
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