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Univariate Setting 
Diebold-Mariano test 

Consider three series: 
 
0.  Observation: AR(2) time series given by 

 Xt = 0.8 * Xt – 1 – 0.2 * Xt – 2  
 
1.  Model 1: Same series as above, but shifted ten 

places to the left. 
 [model 1]t = [Observation]t + 10 

 
2.  Model 2: A smooth Fourier series fit to the 

observations in 0 above. 
 [model 2] ≈ 0.07 – 0.01 * cos(2π * t / 2) + 

sin(2π * t / 2) + … + sin(2π * t / 8) 
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Univariate Setting 
Diebold-Mariano test 
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Univariate Setting 
Diebold-Mariano test 

•  Let x = x1, …, xn be an observed time series. 
•  Let y = y1, …, yn and z = z1, …, zn be two competing 

forecast models for x. 
•  Let g(x, y) and g(x, z) be the loss (or skill) function 

between the modeled and observed time series 
(defined at each time point!). 

•  Null hypothesis of interest is: 
  H0: E[g(x, y)] = E[g(x, z)] 

 
•  Interest is in the “loss differential” 

 d = g(x, y) - g(x, z) 
OR 

   H0: E[dt] = 0 
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Univariate Setting 
Diebold-Mariano test 
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Simple loss for these 
series:  
mean(d) ≈ -0.2 
 
Absolute error loss for 
these series:  
mean(d) ≈ 7.5 
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Univariate Setting 
Diebold-Mariano test 

Test Statistic: 
 
S = (mean(d) – µd) / (2π * sd(0)) 
 
Key is in estimating sd(0) 
 
Obtained through a weighted sum of sample 
autocovariances (Diebold and Mariano, 1995,  
J. Bus. Econ. Stat., 13: 253—263) 
 
Hering and Genton (2011, Technometrics, 53, (4): 414—425) 
suggest fitting a parametric autocovariance model to the 
sample autocovariances first. 
 
 
 
 
 
 

Interest is 
generally in µd = 0. 
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Univariate Setting 
Diebold-Mariano test 

Test Statistic: 
 
S = (mean(d) – µd) / (2π * sd(0)) 
 
Key is in estimating sd(0) 
 
Assumption: S  N(0,1) as n        ∞ 
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Univariate Setting 
Diebold-Mariano test 

Our example: 
 
Simple loss: mean(d) ≈ -0.2 and p-value ≈ 0.8 (not significant) 
 
Absolute Error loss: mean(d) ≈ 7.5 and p-value ≈ 0 (significant) 



UCAR Confidential and Proprietary. © 2014, University Corporation for Atmospheric Research. All rights reserved.  

Univariate Setting 
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Univariate Setting 
Dynamic Time Warping (DTW) 
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Univariate Setting 
Dynamic Time Warping (DTW) 

G. and Roux (2014, accepted to Meteorol. Appl.) 
 
introduce loss function based on DTW: 
 
g(xt, yt) = f(t, w(t)) + h(xt, yw(t)) 

Usual loss function distance traveled in time 
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Univariate Setting 
Dynamic Time Warping (DTW) 
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Univariate Setting 
Dynamic Time Warping (DTW) 
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Absolute error loss:  
mean(d) ≈ -0.97 
p-value ≈ 0.17 (not 
significant) 
 
Recall that without 
warping: Absolute 
error loss for these 
series:  
mean(d) ≈ 7.5 and  
p-value ≈ 0 
(significant) 
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Univariate Setting 
DM Test and Dynamic Time Warping (DTW) 

Summary of Univariate Setting 
•  Diebold-Mariano (DM) test gives an hypothesis test for 

competing forecasts (which forecast is better in terms of a loss 
(skill) function). 

•  Can also get confidence intervals instead of hypothesis test. 
•  Test accounts directly for temporal correlation. 
•  Robust to contemporaneous correlation (Hering and Genton, 

2011). 
•  Works for any loss/skill function. 
•  No distributional assumptions for underlying series (only on the 

mean of the loss differential). 
•  powerful test (Hering and Genton, 2011). 
•  Dynamic Time Warping (DTW) allows for analyzing forecast 

performance while accounting for timing errors. 
•  R software package verification 
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D1 D2 

D = D1 – D2 
Spatial Prediction Comparison Test 
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Introduced by Hering and Genton (2011)  
 
Extension of the time series version introduced by 
Diebold and Mariano (1995). 

Spatial Prediction Comparison Test 
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Spatial Prediction Comparison Test Spatial Prediction Comparison Test 
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S = D
var D( )

var D( ) = 1
L2

C hij( )
j=1

L

∑
i=1

L

∑

 N(0, 1) as L ∞, where  

Covariance function for the loss differential’s spatial 
dependence structure (need to replace with an estimate) 

distance between 
two spatial locations 
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Accounting for Location Errors 
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A B
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Binary fields obtained 
via setting all values 
below 5 mm to zero. 
 
Distance maps can 
be computed 
efficiently, and many 
summary measures 
are based on them.  

proposed loss 
function 

G. (2013, MWR, 141 (1), 340 – 355) 
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Accounting for Location Errors 
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Figure from Johan Lindström 
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G. (2013, MWR, 141 (1), 340 – 355) 
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Accounting for Location Errors 

Loss function =  
 
Distance from original location of each point to 
warped location  
 
 
 
Loss (e.g., square error, absolute error) at each 
point between observation and warped value 

G. (2013, MWR, 141 (1), 340 – 355) 
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Accounting for Location Errors 

G. (2013, MWR, 141 (1), 340 – 355) 
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32 test cases (NSSL/SPC Spring 2005 Experiment).  ARW-WRF vs NMM 



Summary of SPCT and  
SPCT + Warping 

•  hypothesis test (or confidence intervals) for 
competing forecast models. 

•  Accounts for spatial correlation. 
•  Does not require a distributional assumption about 

the underlying fields (only the test statistic, S). 
•  Works for any loss function (though some work better 

than others). 
•  powerful test 
•  R software package SpatialVx conducts the test. 
•  Image Warping loss allows one to also account for 

location and small scale errors. 
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Future Work  
•  Compare with variance inflation factor and block 

bootstrap methods. 
•  Add image warping to SpatialVx, and create an 

image warping package for R. 
•  Space-Time Prediction Comparison Test? 

§  Challenge is to make simulations with known 
spatiotemporal correlation structures. 

§  Test whether a space-time separable covariance 
can be used even in the case of non-separability. 

§  Is it just overkill? 
§  Image warping can be done in space and time 

together (see, e.g., G. et al., 2010, 
NCAR Technical Note, TN-482+STR). 
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