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Relations between CAPE and Shear and severe storms

Reanalysis data

Hypothesis tests and false discovery rates

Simple linear trends

Extreme value statistics

Problems and future steps

Comments, questions and suggestions.



CAPE, shear and severe storms
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CAPE = convective available potential energy; Shear = ver-

tical velocity

In order for a convective storm to exist, high amounts of both

need to be present, though high quantities of both tend not

to exist at the same time.

Data with both observations and reanalysis data is relatively

limited.

Categorizes all events as either non-severe, severe, significant

non-tornadic, severe-tornadic.



CAPE vs. Shear
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CAPE vs. Shear

Select data: 1997 - 1999 5



Log CAPE vs. log Shear
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log(CAPE)*log(Shear) Density Plots
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Reanalysis Data (1957 - 1999)
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Resolution 1.9x1.9 degree lat lon, 27 levels (Approx 17,000

gridpoints).

Every 6 hours from June 1, 1957- Dec 31, 1999 with global

coverage. (Currently we are using data from 1970 - 1999).

Process very similar to starting up a global weather forecast

model.

Soundings were extracted from the data and run through

the Sounding and Hodograph Analysis and Research Program

(SHARP) from the NWS Storm Prediction Center (John Hart

wrote the code).



Maximum Annual CAPE

Data:1970-1999 9



Maximum Annual Shear

Data:1970-1999 10



Max Annual log(CAPE)*log(Shear)
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Hypothesis Testing

Hypothesis testing 12

Suppose n tests are performed, and a single test has probability

α of rejecting the null hypothesis when it is, in fact, true. Then,

If all n null hypotheses are true, then on average, nα of them

will be falsely rejected.

So, for example, if n = 1000 locations (and the null hypothesis

is true for all 1000), then one expects 50 such locations will

be incorrectly found to be significant.



Hypothesis Testing (con’t)
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Several methods are available to account for this problem. Two

main themes:

• field significance: Is an entire field significant?

• multiple testing: Which tests are significant?



Hypothesis Testing (con’t)
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The first method does not give an indication of which particular

locations are significant, but is very popular in climate studies

(over 300 citations of Livezey and Chen (1983)).

The second method makes local determinations of significance.



False Discovery Rate (FDR)
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Typically, one controls a priori for the probability of detecting

significance that does not exist.

Ventura et al (2004) argue for controlling for probability of falsely

rejecting the null hypothesis for climatological studies instead.

That is, probability falsely rejecting the null hypothesis. Also

known as the false discovery rate (FDR). Controls the proportion

of false rejections out of all rejections.



Max Annual CAPE
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Max Annual Shear
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Max Ann. log(CAPE)log(Shear)
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Mean Annual CAPE
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Mean Annual Shear
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Mean Ann. log(CAPE)log(Shear)
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Fitting these data to the GEV
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• For now, fits are carried out at each grid point without ac-

counting for any spatial structure.

• Presently only 30 years of data, so MLE can be unstable, and

often unable to fit using standard MLE method. Could use

L-moments, but here we use a constrained MLE approach.



Constrained MLE
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Approach is similar to that of Coles and Dixon (1999) and Mar-

tins and Stedinger (2000) (both papers have been discussed in

this group).

However, no a priori information as to what ξ should be. So, we

choose a relatively uninformed prior, π(ξ), in (4.2) of Coles and

Dixon.

`pen(µ, σ, ξ) = `GEV(µ, σ, ξ)× π(ξ),

where we use π(ξ) = 1−0.5≤ξ≤1 (i.e., a uniform from -0.5 to

1). We don’t trust models fit at grid points where ξ is close to

boundaries, but this did not happen at most gridpoints (about

3% for ann max cape and ann max shear, and about 9% for

log(cape)log(shear)).



20 Yr Return Level - Max CAPE
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20 Yr Return Level - Max Shear
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20 Yr Return Level - Max log*log
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Shape Paramter - Max. CAPE
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Shape Paramter - Max. Shear
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Shape Paramter - Max. log*log
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Next Steps
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Data is being translated into netcdf format to allow com-

plete timeseries at single cells to be created. It will be easier

to assemble the data needed to make peaks over threshold

models.

Smooth GEV parameters, then recalculate return levels.

Allow parametric changes in GEV parameters to detect changes

with respect to time.

Fit point process models to account for both the magnitude

and frequency of extreme cape, shear, or log(cape)log(shear).

Compare reanalysis data to climate model data? (If climate

model data have the same variables.)



Questions
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How should we take better advantage of the spatial aspect

of the data?

Since the data is to a degree a product of a statistical pro-

cedure, is it correct to think that it will have long tails?

How might seasonality be addressed?

Prior to 1980, data from the southern hemisphere is thought

to be of poorer quality. How might this be addressed?
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False Discovery Rate (FDR)
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Benjamini and Hochberg (1995) FDR method (many unrealistic

assumptions for climate data, such as independent data).

Control proportion, q, of falsely rejected null hypotheses relative

to the total number of rejected hypotheses.

Let

T = Test Statistic

ti = observed value of T at location i; i = 1, . . . , n

Large ‖T‖ evidence against null hypothesis. The p-values are

then defined as

pi = Pr{‖T‖ ≥ ‖ti‖ ‖ null hypothesis is true}



False Discovery Rate (FDR)
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Benjamini and Hochberg (1995) FDR method

Reject null hypothesis at all locations i for which the calculated

p-values, pi, are below a certain value. Specifically, pi ≤ pk, where

k = max
i=0,...,n

{i: pi:n ≤ q
i

n
}

with pi:n the i-th ordered p-value, and p0:n = 0.



False Discovery Rate (FDR)
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Ventura et al. (2004)

Modification of Benjamini and Hochberg method to allow for

dependent data, and still have reasonable power. Same as above

except:

k = max
i=0,...,n

{i : pi:n ≤
q′

1− a

i

n
}

where a is the unknown proportion of true alternative hypotheses

(Must be estimated!). Ventura et al suggest:

â = I−1
I∑

i=1

max

[
0,

F̂p(xi)− xi

1− xi

]
,

where xi = x0(1 − x0)
i−1
I , and I are regularly spaced intervals

between x0 and 1. Ventura et al suggest using x0 = 0.8 and



I = 20 for optimal testing power. Also,

F̂p(x) =
1

n

n∑
i=1

1[0,x](pi)


