A Preliminary Exploration of the Upper Bound of Tropical Cyclone Intensification

Jonathan L. Vigh (NCAR/RAL)

Kerry Emanuel (MIT)

Mrinal K. Biswas (NCAR/RAL)

Eric A. Hendricks (Naval Postgraduate School)

Christopher M. Rozoff (NCAR/RAL)

33rd Conference on Hurricanes and Tropical Meteorology 12C.1 8:00 AM 19 April 2018

Roosevelt Skerrit - https://www.flickr.com/photos/rooseveltskerrit/albums/72157686922251424

Maria was forecast to intensify from 75 kt to 100 kt in the 24 h just prior to its approach to Dominica, however the track was still uncertain and islanders were expecting Category 1 or 2 conditions. Instead they got a Category 5.

Motivation

 The expectation of an upper bound on the intensification rate is motivated by observations of past storms

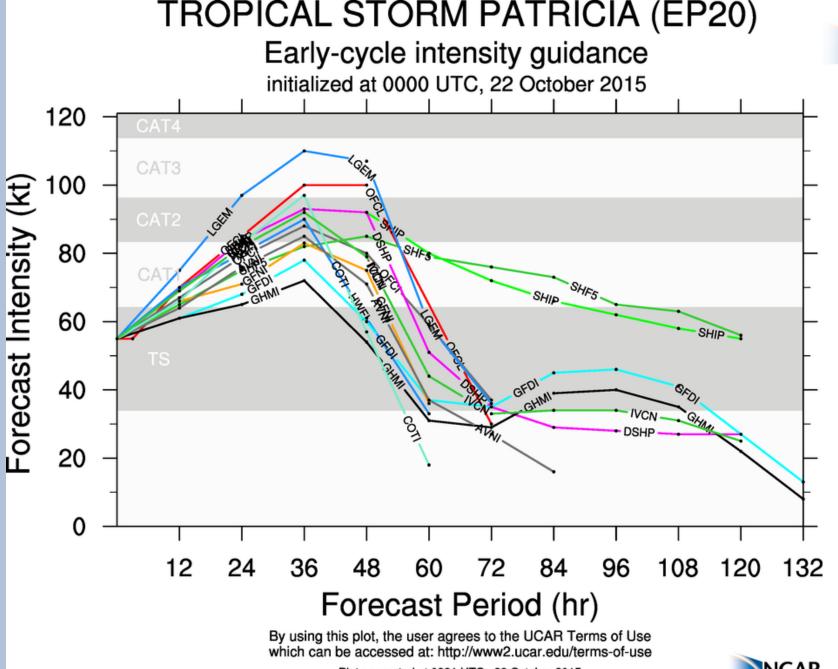
 On several occasions TCs have intensified on the order of 100-105 kt over a 24-h period

 However, this magnitude of intensification has never been observed to occur over time periods much shorter than a day

Motivation, cont'd

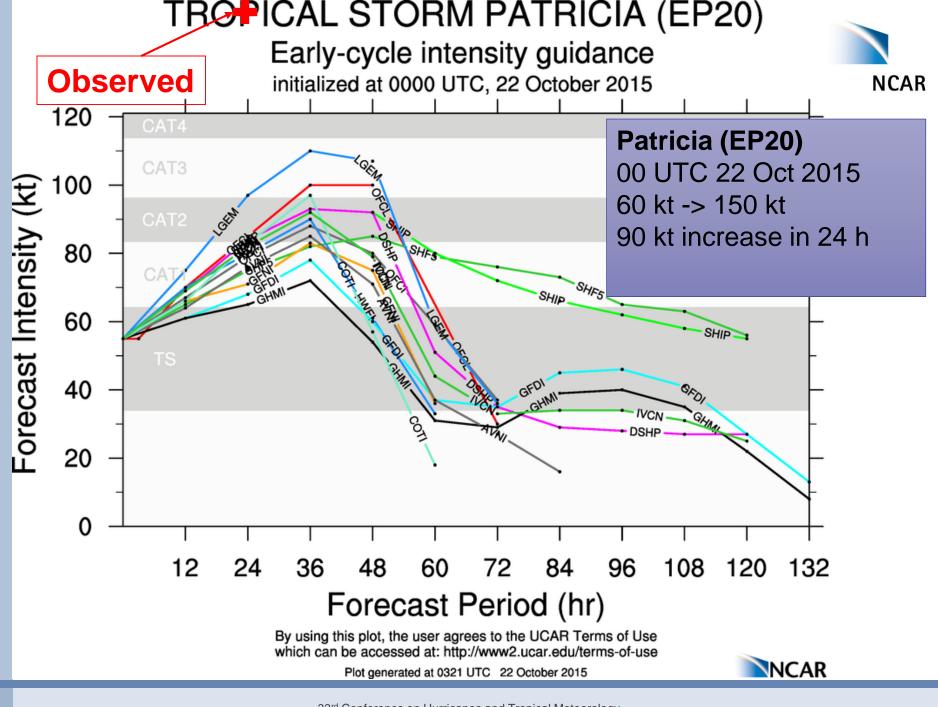
- What is the upper bound on tropical cyclone (TC) intensification, given an initial vortex structure and expected environmental conditions?
- Dynamically, one expects that the upper limit on the intensification rate is largely determined by the efficiency at which the vortex converts thermodynamic to kinetic energy.
- Thus, environmental wind shear, humidity, and the thermal structure of the upper ocean are all key.

Definitions

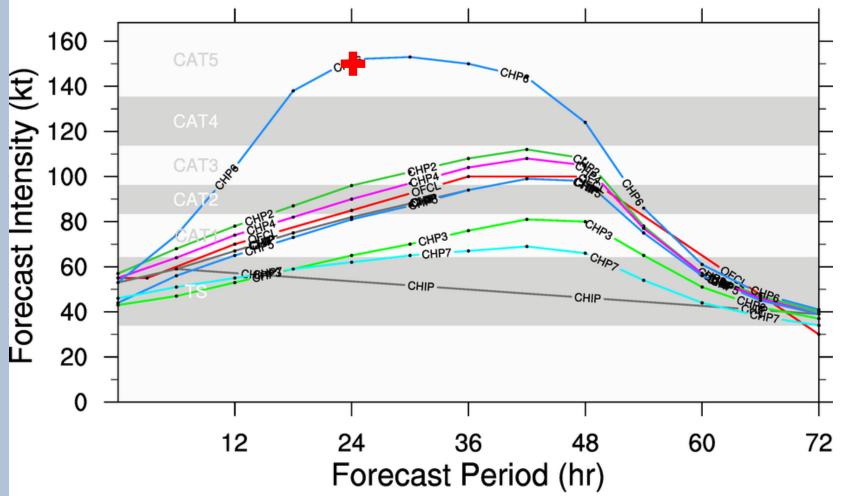

- Rapid Intensification (RI)
 - 30 kt intensity increase in 24 h

- Very Rapid Intensification (VRI)
 - 30 kt intensity increase in 12 h
 - 45 kt intensity increase in 24 h
- Extreme Rapid Intensification (ERI)
 - 40 kt intensity increase in 12 h
 - 60 kt intensity increase in 24 h

Are there any models that can predict VRI and ERI?


- Patricia (EP20)
 - 00 UTC 22 Oct 2015
 - 60 kt -> 150 kt
 - 90 kt increase in 24 hours
- Meranti (WP16)
 - 06 UTC 10 Sep 2016
 - 35 kt -> 155 kt
 - 120 kt increase in 60 hours
- Maria (AL15)
 - 00 UTC 18 Sep 2017
 - 75 kt -> 145 kt
 - 70 kt increase in 24 h

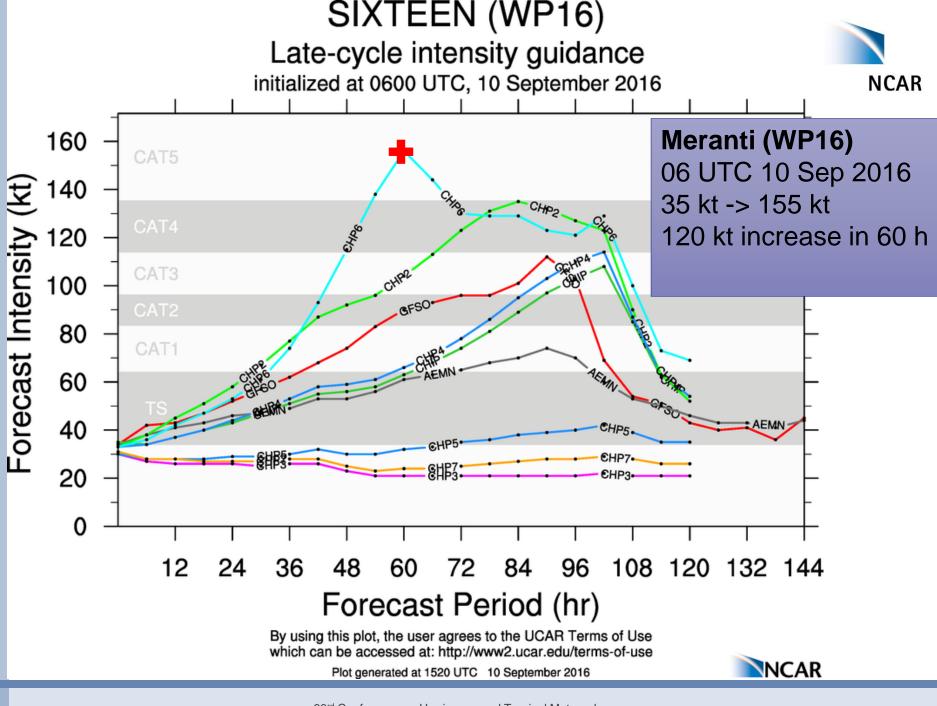
NCAR



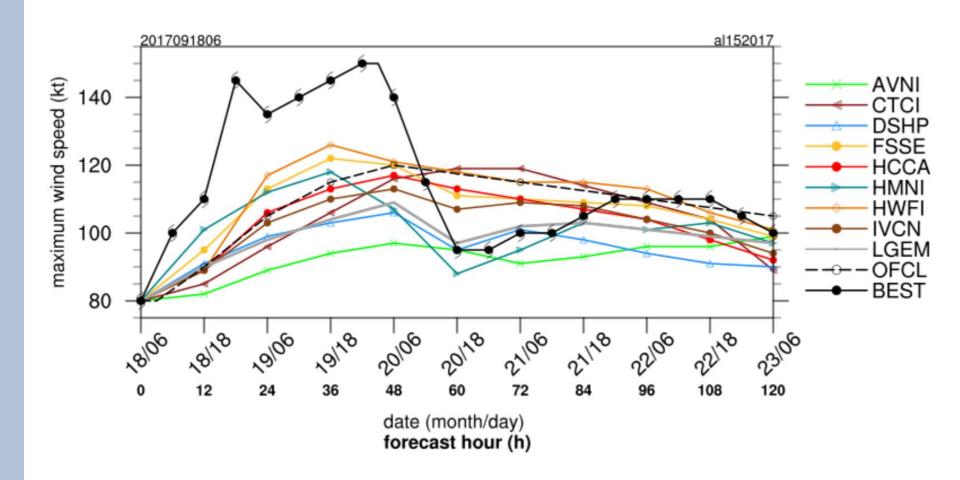
TROPICAL STORM PATRICIA (EP20)

Experimental late-cycle intensity guidance

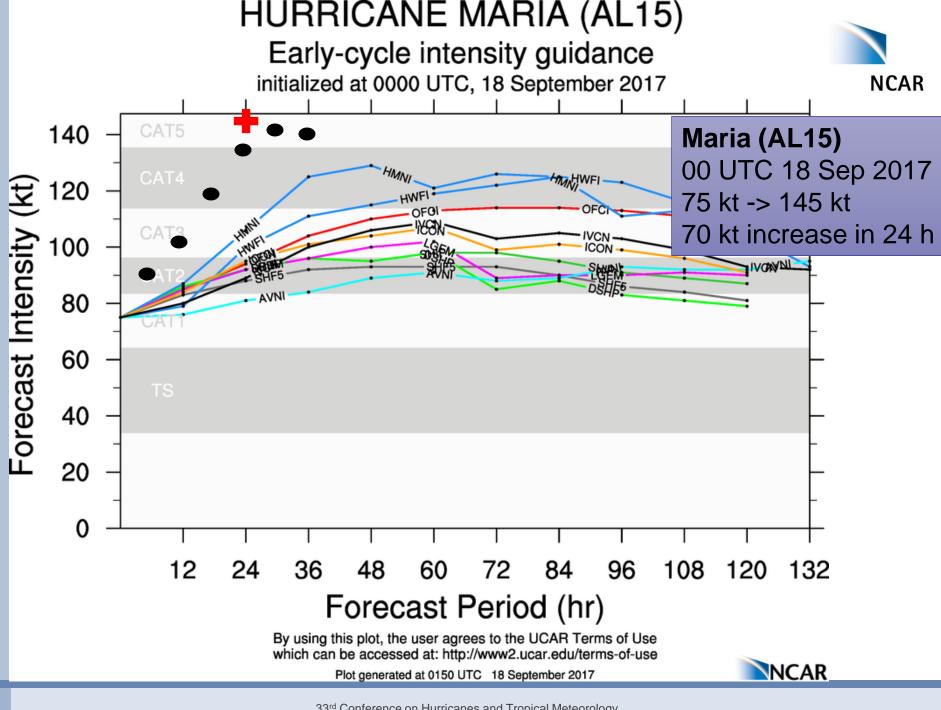
initialized at 0000 UTC, 22 October 2015


This plot displays experimental forecast aids from the HFIP stream 1.5 and other sources.

THESE MODELS MAY NOT BE SKILLFUL!


By using this plot, the user agrees to the UCAR Terms of Use which can be accessed at: http://www2.ucar.edu/terms-of-use

Plot generated at 0920 UTC 22 October 2015



From NHC Tropical Cyclone Report for Maria

Coupled Hurricane Intensity Prediction System

- CHIPS is a relatively simple two-dimensional (radius-height plane) dynamical model (Emanuel et al 2004).
- Uses a potential radius coordinate, providing very high resolution in the eyewall region, with lower resolution in the outer part of the model domain.
- Convection is parameterized as a quasi-equilibrium balance between the increase of entropy due to surface fluxes, radial transport, and the downward transport of low entropy air from mid-levels.
- Both the initial and outer boundary value of the mid-level moist entropy is provided from NCEP operational analyses.
- Effect of vertical shear is parameterized via the model's convective fluxes (more shear produces more ventilation of the storm, causing weakening).
- The model is coupled to 1D ocean models that are strung out along the storm's predicted path.

CHIPS, cont'd

Boundary conditions

 GFS fields; GFS analyzed SST; mixed layer depth and sub-mixed layer thermal stratification from Levitus monthly climatology

Initialization

- The model is started from the beginning of the storm history, with the mid-level entropy being adjusted to keep the intensity as close as possible to the observed value up until the beginning of the forecast.
- The potential intensity is computed from the Global Forecast System (GFS) model's full vertical column profiles of temperature and humidity, but lagged by 5 days so as to remove any influence of the storm

CHIPS Ensemble

- Member 1 CHIP: control (same as deterministic run)
- Member 2 CHP2: initial intensity enhanced by 3 m/s in previous 24-hr period (ramped up)
- Member 3 CHP3: initial intensity decreased by 3 m/s in previous 24-hr period (ramped down)
- Member 4 CHP4: initial intensity same as control, but the intensity 12 hours previous is enhanced by 1.5 m/s to produce a negative intensification anomaly at the initialization time
- Member 5 CHP5: initial intensity same as control, but the intensity 12 hours previous is decreased by 1.5 m/s to produce a positive intensification anomaly at the initialization time
- Member 6 CHP6: initial intensity enhanced by 3 m/s in previous 24-hr period (ramped up) with vertical wind shear set to zero at all times -meant to provide a plausible upper bound for the intensity forecast
- Member 7 CHP7: initial intensity decreased by 3 m/s in previous 24-hr period (ramped down) with vertical wind shear enhanced by 5 m/s -meant to provide a plausible lower bound for the intensity forecast

NCAR

Verification Protocol

- All global basins
- 2013-2017
- Post-season best tracks from NHC/JTWC for 2013-2016
- Real-time best tracks for 2017
- Over water (land cases excluded)
- Models included: CHP6, HWRF, COTC, CTCX, OFCL/JTWC
- Used the Model Evaluation Toolkit for Tropical Cyclones(MET-TC) v6.1

30 kt / 24 h

CHP6							
RI Observed							
Forecast	Yes	Yes No Total Forecasts					
Yes	573 1637 2210						
No	830 15924 16754						
Total Obs	1402	17561	19028				

HWRF						
RI Observed						
Forecast	Yes No Total Forecasts					
Yes	273	498	771			
No	1194	17063	18257			
Total Obs	1467	17561	19028			

Hits

30 kt / 24 h

False Alarms

C	HI	P6

RI	RI Observed				
Forecast	Yes No Total Forecast				
Yes	573	1637	2210		
No	√ 830	15924 🔨	16754		
Total Obs	1402	17561	19028		

Misses

HWRF

Correct Nulls

RI	RI Observed			
Forecast	Yes	No	Total Forecasts	
Yes	273	498	771	
No	1194	17063	18257	
Total Obs	1467	17561	19028	

RI: 30 kt / 24 h

CSI

GSS

= 0.139

= 0.112

CHP6				CLIMO	
RI Observed					l = 11.9% = 1.55
Forecast	Yes	No	POD	= 0.434	
Yes	573	1637	2210	POFD	= 0.093
No	830	15924	16754	FAR CSI	= 0.729 = 0.205
Total Obs	1402	17561	19028	GSS	= 0.157

Yes	573	1637	2210	POFD	= 0.093
No	830	15924	16754	FAR CSI	= 0.729 = 0.205
Total Obs	1402	17561	19028	GSS	= 0.203 = 0.157
	HWRF				
RI	RI Observed				
Forecast	Yes	No	FBIAS POD	= 0.52 = 0.186	
Yes	273	498	771	POFD	= 0.028
No	4404	47062	10057	† FAR	= 0.646

18257

19028

17063

17561

1194

1467

No

Total Obs

VRI: 30 kt / 12 h

CHP6				CLIMO	= 2.3%
RI	RI Observed			FMEAN FBIAS	N = 6.0% = 2.64
Forecast	Yes	No	Total Forecasts	POD	= 0.302
Yes	123	953		POFD	= 0.055
No	284	16511		FAR CSI	= 0.885 = 0.090
Total Obs			17871	GSS	= 0.030 = 0.074

]				
RI	FMEAN FBIAS	1 = 0.9%			
Forecast	Yes	No	Total Forecasts	POD	= 0.042
Yes	17	139		POFD	= 0.008
No	390	17325		FAR CSI	= 0.891 = 0.031
Total Obs			17871	GSS	= 0.031 = 0.025

ERI: 40 kt / 12 h

CHP6				CLIMO = 0.71%
RI	RI Observed			FMEAN = 2.8% FBIAS = 3.89
Forecast	Yes	No	POD = 0.189	
Yes	24	471		POFD = 0.027
No	103	17273		FAR = 0.951 CSI = 0.040
Total Obs			17871	GSS = 0.034

HWRF						
RI Observed						
Forecast	Yes No Total Forecasts					
Yes	3	21				
No	124	17723				
Total Obs			17871			

FMEAN = 0.13% FBIAS = 0.19 POD = 0.023 POFD = **0.001** FAR = **0.875** CSI = 0.020 GSS = 0.019

VRI: 45 kt / 24 h

CHP6				CLIMO	
RI Observed					I = 6.3% = 2.34
Forecast	Yes	No	POD	= 0.352	
Yes	180	1016		POFD	= 0.055
No	331	17501		FAR CSI	= 0.850 = 0.118
Total Obs			19028	GSS	= 0.099

HWRF					
RI	RI Observed				
Forecast	Yes No Total Forecasts				
Yes	19 83				
No	492 18434				
Total Obs			19028		

FMEAN = 0.6% FBIAS = 0.20 POD = 0.037 POFD = **0.004** FAR = **0.814** CSI = 0.032 GSS = 0.028

ERI: 60 kt / 24 h

CHP6					= 0.86%
RI		RI Ob	served	FMEAN FBIAS	l = 3.1%
Forecast	Yes	No	Total Forecasts	POD	= 0.256
Yes	42	544		POFD	= 0.029
No	122	18320		FAR CSI	= 0.928 = 0.059
Total Obs			19028	GSS	= 0.053

OLIMO	– 0.00 /0
FMEAN	I = 3.1%
FBIAS	= 3.57
POD	= 0.256
POFD	= 0.029
FAR	= 0.928
CSI	= 0.059
\circ	0.050

HWRF					
RI	RI Observed				
Forecast	Yes No Total Forecasts				
Yes	1 6				
No	163 18858				
Total Obs	19028				

FMEAN = 0.04%= 0.043**FBIAS** = 0.006POD POFD = 0.000FAR = 0.857CSI = 0.006GSS = 0.006

		Base Rate	Prob. of Detection	False Alarm Rate	Equitable Threat Score
30 kt / 12 h	VRI	2.3%	0.302 0.042	0.885 0.891	0.074 0.025
40 kt / 12 h	ERI	0.7%	0.189 0.023	0.951 0.875	0.034 0.019
30 kt / 24h	RI	7.7%	0.434 0.186	0.729 0.646	0.157 0.112
45 kt / 24 h	VRI	6.3%	0.352 0.037	0.850 0.814	0.099 0.028
60 kt / 24 h	ERI	0.9%	0.256 0.006	0.928 0.857	0.053 0.006

CHP6 HWRF

NCAR

- In terms of guidance for estimating the upper bound of intensification, CHP6 outperforms all other numerical models.
 - Far superior probability of detection
 - Modestly higher False Alarm Rate compared
 - HWRF and OFCL have some skill at RI threshold, however HWRF only retains slight skill at VRI and ERI thresholds.

 The dynamics of VRI/ERI are primarily axisymmetric and do not require a 3D fullphysics framework.

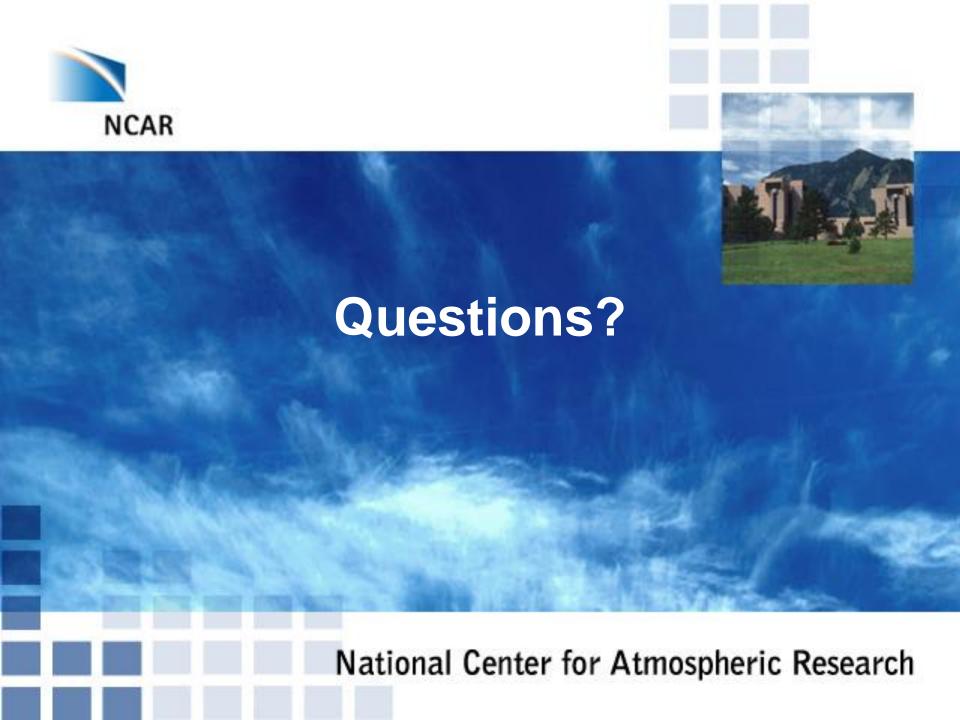
 These successful CHP6 predictions suggest that the general pathway of ERI can be captured by an axisymmetric numerical model.

The upper intensification limit, which can be considered the *Maximum Potential* Intensification Rate, or MPIR, may be achieved when the storm structure and latent heating distribution are axisymmetric in a favorable environment. When the MPIR limit is high for a given storm, ERI becomes possible.

Future Work

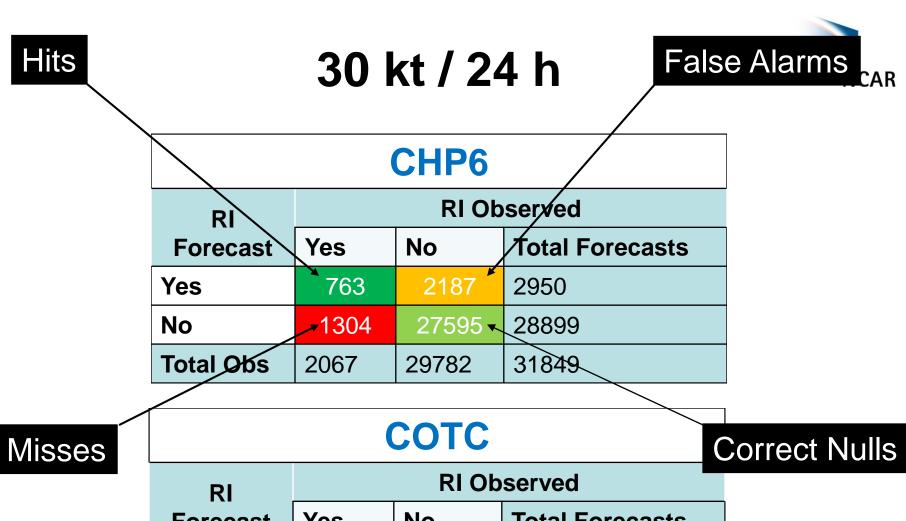
 Explore how the upper bound on a TC's intensification rate depends on the storm's predicted environment and initial vortex structure.

Next steps:


- Examine high-resolution flight level observations from several ERI cases to learn how the TC's physical scale (RMW), inertial stability, dynamic efficiency, and column-integrated latent heating evolve during ERI.
- Create and evaluate an initial forecast aid for the upper bound intensity forecast

Acknowledgments

 We thank Zhan Zhang (NCEP/EMC) for providing some of the a-decks used in the verification.


 NCAR is sponsored by the National Science Foundation.

CHP6 vs. COTC

 This 2hd verification only covers the Northern Hemisphere storms.

RI	RI Observed			
Forecast	Yes	No	Total Forecasts	
Yes	242	726	968	
No	1824	28857	30681	
Total Obs	1546	29583	31649	

30 kt / 24 h

CHP6				
RI		RI Ob	BASER = 0.065	
Forecast	Yes	No	FMEAN = 0.093	
Yes	763	2187	2950	POD = 0.369 POFD = 0.073
No	1304	27595	28899	FAR = 0.741
Total Obs	2067	29782	31849	CSI = 0.179

RI		RI Ob	BASER = 0.065	
Forecast	Yes	No	Total Forecasts	FMEAN = 0.031
Yes	242	726	968	POD = 0.117 POFD = 0.025
No	1824	28857	30681	FAR = 0.750
Total Obs	1546	29583	31649	CSI = 0.087

50 kt / 24 h

CHP6				
RI		BASER = 0.015		
Forecast	Yes	No	Total Forecasts	FMEAN = 0.037
Yes	114	1055		POD = 0.236 POFD = 0.034
No	370	30310		FAR = 0.903
Total Obs				CSI = 0.074

	COTC			
RI		RI Ob	BASER = 0.015	
Forecast	Yes	No	Total Forecasts	FMEAN = 0.002
Yes	2	56		POD = 0.004 POFD = 0.002
No	482	31109		FAR = 0.966
Total Obs				CSI = 0.004

50 kt / 48 h

CHP6				
RI Observed				BASER = 0.054
Forecast	Yes	No	FMEAN = 0.069	
Yes	374	1047		POD = 0.336 POFD = 0.054
No	739	18315		FAR = 0.737
Total Obs				CSI = 0.173

COTC				
RI		RI Ob	BASER = 0.055	
Forecast	Yes	No	Total Forecasts	FMEAN = 0.019
Yes	101	278		POD = 0.091 POFD = 0.015
No	1012	18934		FAR = 0.734
Total Obs				CSI = 0.073

80 kt / 48 h

CHP6				
RI	RI Observed		served	
Forecast	Yes	No	Total Forecasts	
Yes	27	298		
No	99	20051		
Total Obs				

BASER = 0.006
FMEAN = 0.016
POD = 0.214
POFD = 0.014
FAR $= 0.917$
CSI = 0.064

RI	RI Observed			
Forecast	Yes	No	Total Forecasts	
Yes	1	5		
No	125	20194		

COTC

BASER = 0.006 FMEAN = 0.0003 POD = 0.008 POFD = 0.0002 FAR = 0.833 CSI = 0.008

Total Obs

80 kt / 72 h

CHP6				
RI	RI Observed			
Forecast	Yes	No	Total Forecasts	FM
Yes	24	224		PC
No	97	11546		FA
Total Obs				CS

BASER = 0.010
FMEAN = 0.021
POD = 0.198
POFD = 0.019
FAR $= 0.903$
CSI = 0.070

COIC			
RI	RI Observed		
Forecast	Yes	No	Total Forecasts
Yes	6	6	
No	115	11665	
Total Obs			

COTC

BASER = 0.010 FMEAN = 0.001 POD = 0.050 POFD = 0.001 FAR = 0.500 CSI = 0.047