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On the Need for Objective State Estimation

* Considerable epistemic uncertainty exists in current
historical TC databases
* Constantly evolving observation systems
* Changing operational practices (and people!)
* Advancements in scientific knowledge

* Lack of clarity on the impact of a given observation on the
analyzed result

* Lack of best-tracking for some parameters
* RMW
* wind radius for 96-kt, 113-kt, 136-kt

e structural characterizations such as presence of an eye, existence
of multiple wind radii

12 July 2018 Presented at the Shanghai Typhoon Institute



Drawbacks of Subjective Reanalyses o

* Labor intensive

* Requires a substantial amount of effort to add new parameters to the
reanalysis

* Potential difficulties with reproducibility

* Potential requirement to repeat the whole process when significant

scientific advances are made, or when (new) legacy observations are
added
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What is Objective State Estimation?

A technigue whose goal is to optimally estimate one or
more parameters of a system from estimates of the
parameter or other aspects of the system

* Variational data assimilation techniques (dynamical models)
* “Hybrid” analysis techniques (H*WIND)

« Statistical model approaches (e.g., linear regression)

* Objective criteria-informed algorithmic approach

* Full-scale Al

Note: Input estimates do not have to be actual observations —
they can be based on a model of the system evolution
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Should we just let Al do it? NCAR
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Image credit: Fist Ful of Talent: http://fistfuloftalent.com/2017/01/wild-west-ai-bots.html
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. . . . NCAR
Costs of Objective State Estimation

* Requires considerable effort to standardize the observational input
data

* Requires development of methods, algorithms, and/or statistical
relationships to determine the associated uncertainty characteristics
of these data

* Requires effort to setup a program to undertake the analysis

s
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Benefits of Objective State Estimation NCAR

* Rapid computation without the need for additional human labor

* Relatively easy to:
* add alternative state estimation methods for a given parameter
* add analysis methods for entirely new parameters
* add new data sources
* add or modify the characteristics associated with different types of data

* The database can be easily revised when new advances are made in
the science

* Full and complete reproducibility

* Full transparency on the impact of an observation on the analyzed
parameter
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Benefits, cont’d o

e Automatic archiving of all metadata
* Which can be made accessible in tabular and graphic formats, as well as
machine-readable formats
* Community input

* Codes for individual objective analysis methods (or even the entire analysis
platform) can be made open source to allow input from the wider scientific
community across a range of disciplines

* Time-dependent uncertainty bounds on each parameter

* The analysis platform facilitates the estimation of time-dependent uncertainty
bounds, subject to the characteristic uncertainty of the available observations
and the number of observations
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The Need
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Better data needed to generate more realistic synthetic event sets for modeling
risk

* Higher spatial resolution
* HURDAT provides data at 0.1 deg (~6 miles)

" * Higher temporal resolution

* HURDAT is 6-hourly and only attempts to preserve fluctuations on the order of a day — m
fluctuations get smoothed out

* Better description of wind structure
* HURDAT rounds vmax to 5 kt and size to 5 nm
* HURDAT does not include RMW as a best-tracked quantity
* HURDAT only includes wind radii information back to 2004
 HURDAT does not include any wind radii for winds higher than hurricane-force




Hurricane Isabel Hurricane Charley }

MSLP: 933 mb MSLP: 947 mb
VMAX: 140 kt VMAX: 125 kt
No wind radii in 64-kt wind radii: 20 20 10 10 (nm)
Best Track! 34-kt wind radii: 40 75 75 50 (nm)
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Tropical Cvclone Observatlons Based
= s

Structure (TC-OBS) Database

L R e R e S e
* Revised/refined observations-based estimates of track (position), intensity,
RMW, and size (wind radii)

2 Time-dependent observations-based uncertainty bounds

-

=4 * Azimuthal mean wind speed
»~ . * Spatial/temporal coherence of location of maximum wind
| » All parameters provided at 1-hour intervals

* All asynoptic time points included in HURDAT?2 are also included (including
all landfall times)

* No rounding for positional data precision

| » Ancillary parameters that indicate distance to land, translation
speed/direction, and whether the cyclone was over land

-+ * Additional wind radii at the Saffir-Simpson category thresholds:
» 83-kt (Cat1/2), 96-kt (Cat 2/3), 113-kt (Cat 3/4), 137-kt (Cat 4/5)

; * All HUDAT parameters included for comparison
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Extended Flight Level Dataset for Tropical NCAR

Cyclones (FLIGHT+, v1.1)

* Dataset coverage
e 273 cyclones
* Atlantic, Eastern Pacific, Central Pacific, Western Pacific
e 1999 to 2015

e 7500 “good” radial legs
* All typical flight level parameters included
* SFMR surface winds

e Dataset characteristics

e Standardized data from U.S. Air Force Reserve and NOAA Hurricane Hunter
research flights

Extensive quality control measures

Automatic parsing of radial legs, translation to storm-relative coordinates,
azimuthal and radial winds, etc.

High resolution data binned to 100-m grid
* Modern, user-friendly format (NetCDF)
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=& Tropical Cyclone Data Project ﬁ}{\- - |
- I L) ——— r.\ln. L .
Home | Project Overview | VDM+ Dataset |. FLIGHT+ Dataset | QSCAT-R Dataset | TC-OBS Database | R

About FLIGHT+ Versions & data sources Download dataset Applications & visualizations Users References

FLIGHT+ Dataset | About The Flight Level Dataset (FLIGHT*)

ABOUT THE FLIGHT LEVEL DATASET (FLIGHT+)

The second phase of this RPI-funded project has built a new dataset of standardized flight level
data. This dataset covers all Atlantic, Eastern Pacific, and Central Pacific tropical cyclones with
flight level data during the period from 1997 to 2015. The dataset also includes flights in certain
Western Pacific TCs in 2008 and 2010. The flight level data is provided in both earth-relative
and storm-relative coordinates at the highest temporal resolution available (e.g. 30-second, 10-
second, or 1-second). Additionally, flight level data has been parsed by radial leg and
interpolated to a standarized radial grid. Significant effort has been undertaken to quality control
the data. The dataset was released to RPI member companies in August 2014. The dataset was
released to the public on 20 April 2016.

Navigate this section

Use the links below to learn more about the data sources have gone into this dataset, to
download the combined dataset and accompanying documentation, and to learn more about
applications of this dataset.

¢ Source data< and information about versions/a>

¢ Download the dataset & documentation

¢ Applications & visualizations

s Dataset Users

* References

This page was last updated 20 April 2016 by Jonathan Vigh.

What's New in the FLIGHT+ Dataset?
20 April 2016

Version 1.1 of FLIGHT+ is now released to the
public. This version extends the dataset to include
data from 2014 and 2015 and addresses the
issues with the storm relative winds discussed
below. Several new parameters have been added
to provide additional information about the flight
level pressure and time of the wind maxima. For a
full description of the differences between vi.1
and v1.0, click here

19 January 2016

A couple errors have recently been discovered in
the formulas used for the calculation of the zonal
and meridional components of the wind center of
the cyclone. The result of these errors is that
some significant errors with magnitudes up to
twice the cyclone translation speed have been
introduced into some of the storm relative wind
speeds that are contained in the Level 3 (L3)
dataset product. If you are not using the storm-
relative wind speeds of the L3 data products, you
should not be affected by this issue. The earth-
relative wind speed parameters are unaffected. A
new version of the FLIGHT+ Dataset will be
generated in the near future to address this issue
and add some enhancd metadata concerning the
maximum wind location of each radial leg.

22 August 2014

The FLIGHT+ Dataset has been released to the
RPI member companies. The public release of the
FLIGHT+ Dataset is planned for April 2016.



http://verif.ral.ucar.edu/tcdata/flight/

. . . NCAR
Optimal Estimation of Track

1. Filter/merge obs: Eliminate duplicate fixes and use just the
Willoughby-Chelmow (W/C) fixes when both are present.

2. Supplement with Best Track points when there are gaps of 3 h or
more between observational fixes.

3. Fitaninterpolatory cubic spline through all points

s
12 July 2018 Presented at the Shanghai Typhoon Institute



KATRINA (AL122005)

Comparison of Cyclone Position Information i
NCAR

e Best Track

@ BT Position at 0000 UTC

& BT Position at 0600 UTC

O BT Position/date at 1200 UTC

¢ BT Position at 1800 UTC

@ BT Position at off-synoptic times

~e- Interpolated BT (hourly)

O VDM fix

[ W

Chelmow/Willoughby fix

= HRD spline fit to C/W fixes

w e TC-OBS Track

Necessary to remove C/W center fixes
that are too close in time to avoid
forcing the interpolating spline in

" unphysical directions

|
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ERIKA (AL062009) N

Comparison of Cyclone Position Information
60°W NCAR

@ Best Track

@ BT Position at 0000 UTC

@ BT Position at 0600 UTC
| O BT Position/date at 1200 UTC ||

@ BT Position at 1800 UTC

@ BT Position at off-synoptic times
e Interpolated BT (hourly)

O VDM fix

Chelmow/Willoughby fix

== HRD spline fit to C/W fixes

Challenge: How to handle situations when the center
“jumps” or there are multiple centers




30°N
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ISAAC (AL092012)

Comparison of Cyclone Position Information

L

= i L

== Best Track
@ BT Position at 0000 UTC
BT Paosition at 0600 UTC
O BT Position/date at 1200 UTC
BT Position at 1800 UTC
@ BT Position at off-synoptic times
« Interpolated BT (hourly)
O VDM fix
Chelmow/Willoughby fix
= HRD spline fit to C/W fixes

s »» TC-OBS Track

L7
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General Methodology for Optimal Estimation
from Observations NEAR

1. Filter/merge step: 2. Traverse data using
eliminate duplicatory or moving window centered
conflicting data, keep best on the target time for
observations estimation

3. Determine # of 4. From # of effective data
effective data points using points, compute total

some sort of “goodness” observational weight, then
criteria as well as nearness compute background
to time of interest weight as residual weight

5. Optimally estimate

parameter value as a

weighted average of
observations and
background value

e
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. . . . . NCAR
Objective Estimation of Intensity

1. Filter/merge obs

. Reduce flight level maxima to surface equivalent values using Franklin et
al 2003 relationships

2. Traverse time domain with a moving analysis window

* Half width of 6 h (compromise between maintaining “sharpness” and
robustness)

s
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Objective estimation of Intensity, cont’d ENCAR

3. Determine effective # of data points using nearness-in-time and
“goodness” criterion

* Nearness-in-time criterion:
ot

Wprovisional data weight = 2\
observational influence

where A, pservational influence 1S the e-folding time scale for observational data
influence. In most situations,

}\observational influence ~ 4 is used. .
Effective data
weight

0 1.000
t1 0.794
t2 0.607
3 0.368
6 0.223

e Goodness criterion:
“how close is the VMAX ob to the time-trended upper bound”?
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Objective Estimation of Intensity, cont’dneas

4. Compute total observational and background weights
* Give higher collective weight to obs when # of effective data points is large

* Give higher weight to the background value when the # of effective data points
is low

neffective data points

Wcombined observations — exp(— A
background influence

where Neffective data points — 2 Woyrovisional data weight

and Apgckground infiuence = 0.666667 is the e-folding
length-scale for background data influence.

# of effective data points background weight

0.0 1.000
0.4 0.513
1.1 0.189
4.0 0.002
e —— N
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NCAR
Objective Estimation of Intensity, cont’d

5. Optimally estimate the intensity value as a weighted average of the
observations and the background value

This procedure is essentially a criteria-informed weighted average

This algorithmic approach ensures that the TC-OBS intensity relaxes
smoothly back to the HURDAT2 track when intensity fixes are sparse

s
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Wind speed (kt)

ANDREW (AL041992)
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Wind speed (kt)

ANDREW (AL041992)
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: : : : . , NCAR
Objective Estimation of Intensity Uncertainty

* Follows same general approach as for intensity itself, but instead of a
weighted average, a weighted variance is computed

* Characteristic uncertainty for a given flight level observation comes
from flight-to-surface standard deviations reported in Franklin et al
2003

* For SMFR, the uncertainty is the +/- 4 m/s reported in Uhlhorn et al
2007

s
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NCAR

Objective Estimation of RMW

Follows same general approach as for intensity, but applies the Powell
et al 2009 statistical relationship:
RMwsurface = 0.875 RMWflight level
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BOB (AL031991)
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Radius (n mi)

LUIS (AL131995)

Radius of Maximum Wind \R
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Radius (n mi)

OPAL (AL171995) ,
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NCAR

Objective Estimation of Wind Radii

* Follows same general approach as for intensity and RMW (but now
with no “goodness criterion”)

e Uncertainty in flight level-to-surface reduction factors translates into
radial uncertainty for flight level wind radii fixes

* Uncertainty in SFMR is a steady +/- 4 m/s based on Uhlhorn et al
2007
* TCs with SFMR data have considerably smaller uncertainty than TCs without

s
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KATRINA (AL122000)
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Ssummary

* The TC-OBS project demonstrated that objective state estimation shows
significant potential for use in reanalysis efforts

* Methods will need to be refined to be appropriate for the much wider
set of data sources

* Challenge of using “meta” inputs
* How independent are the wind radii estimates of Knaff et al 2016 from those of
Dolling et al 2016, etc.? Dvorak from ADT, etc.

* Developing the underlying relationships will result in a lot of good
science as a by-product
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Future Work (TC-OBS)

* Expand FLIGHT+ Dataset further back in time
* Calculate flight level pressure for all AFRES flights prior to 2004
* Use HRD’s reprocessed SFMR data

* Use the vmax/rmax/wind radii data contained in the f-decks
* TAFB/SAB Dvorak fixes, AMSU, CIMSS, CIRA, ADT/ODT, SAR/ASCAT/QSCAT)

* Update the QSCAT-R Dataset with quadrant-specific wind radii
* Use to refine r34, r50, r64, and r83 estimates

* Include surface observations from land/buoys

* Apply/develop a new set of flight->surface reduction factors based on the FLIGHT+
Dataset
* Explore whether time-dependent SST information and dropsonde profiles can be used to
improve flight->surface reduction factors

* Examine the sensitivity of wind hazard risk using TC-OBS vs. HURDAT, case studies
of damage for major landfalling storms

* Implement Bayesian and/or boot-strapping-based models to estimate uncertainty

Estimate the actual uncertainty of the Best Track

s
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