A Generalized Rapid Intensification Prediction Framework

Paper 4B.5 1:25 PM 10 May 2021

Jonathan L. Vigh

National Center for Atmospheric Research, Boulder, CO

C. M. Rozoff, E. A. Hendricks, M. K. Biswas, J. Lin, K. Emanuel, D. J. Gagne II, I. C. Mac. Kucera, M. DeMaria, J. A. Knaff, C. R. Sampson, and R. Ríos-Berríos

AMS 34th Virtual Conference on Hurricanes and Tropical Meteorology

Progress and Challenges in Predicting Rapid Intensification

Significant improvements in limited area 3-d full physics models

- Although these models exhibit a relatively low probability of detection (POD) and high false alarm rate (FAR), these models can now occasionally predict rapid intensification (RI)
 - Hurricane Weather Research and Forecasting System (HWRF)
 - Coupled Ocean/Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS®-TC) models.

Statistical techniques and data mining

- Machine learning is starting to show some promise, however, such models come with their own special challenges.
 - SHIPS, LGEM, DTOPS
 - Marbleri (Gagne et al. 2020)
 - Hurricane LOGistic Regression Model (HLOG, MacDaniel et al., **4B.10 3:50 PM May 10**)

It remains a grand challenge to obtain an RI prediction technique that is both reliable and accurate

Global models and ensembles

- Forecasts of Hurricanes using Large-ensemble Outputs (FHLO, Lin et al. 2020; **4B.8** 3:40 PM May 10)
- COAMPS-TC ensemble

Nature of RI

- Environment (e.g., MPI, shear) vs. internal processes
- Deterministic vs. stochastic
- Role of vortex structure, SWAMI (Hendricks et al.; Poster 9, 2:00 PM May 10)

Have we framed the problem correctly?

• Case-based vs. event-based

Can we improve upon current models with a new prediction framework which accounts for the probabilistic nature of RI?

NCARA Generalized Rapid Intensification Prediction FrameworkUCARJonathan VighPaper 4B.510 May 2021

Objectives of Current Work

- 1. Formulate a post-processing framework that combines existing forecast aids in a way that accounts for the probabilistic nature of RI
- 2. Demonstrate that such performance can be potentially useful for improving deterministic predictions of RI
- 3. Such a framework should improve upon the reference model's Probability of Detection (POD) for RI without introducing large biases or significantly increasing the False Alarm Rate

Generalized Rapid Intensification Prediction Framework (GRIP) Components

Reference model

- Any model that generally does well at deterministic intensity prediction
- Does <u>not</u> need to be good at predicting RI
- Candidates:
 - HWRF
 - Consensus aids such as HCCA and IVCN

Upper bound model

- Coupled Hurricane Intensity Prediction Scheme (CHIPS, Emanuel et al. 2004) ensemble
 - Member 6 CHP6: initial intensity enhanced by 3 m/s in previous 24-hr period (ramped up) with vertical wind shear set to zero at all times
- Provides a time-varying plausible upper bound for the intensity forecast
- An alternative upper bound model could be provided by FHLO or a full physics ensemble

Probabilistic RI model

- Hurricane LOGistic Regression Model (HLOG) MacDaniel et al. 2021, 4B.10 3:50 PM May 10

GRIP Configurations

Naïve baseline for comparison

- GBHC: Simple average of HWRF and CTCX

• Weighted averages with fixed weights (half GRIP)

- GH6N: HWRF with CHP6 upper bound at fixed blending percentages varying from 10-90%: GH6[0-9]
- GC6N: HCCA with CHP6 upper bound at fixed blending percentages varying from 10-90%: GC6[0-9]
- GI6N: IVCN with CHP6 upper bound at fixed blending percentages varying from 10-90%: GI6[0-9]

Full complexity GRIP

- GH6L: HWRF with CHP6 upper bound with varying blending percentage based on HLOG RI probabilities
- GC6L: HCCA with CHP6 upper bound with varying blending percentage based on HLOG RI probabilities
- GI6L: IVCN with CHP6 upper bound with varying blending percentage based on HLOG RI probabilities

NOTES

- the full complexity GRIP forecasts are only available 2018-2019 due to limitations on HLOG availability

00

- HLOG currently only provides the probability of RI at 24 h

Verification Protocol

- Atlantic-only storms
- Post-season best tracks from NHC/JTWC for 2013-2016
- Post-season best tracks from NHC for 2016-2019
- Provisional best tracks for 2020
- Over water (land cases excluded)
- Models included for comparison: HWRF, HCCA, IVCN, CHP6, CTCX, OFCL
- Used the Model Evaluation Toolkit for Tropical Cyclones (MET-TC) v9.1

Mean Intensity Error

Mean Intensity Error

NCAR UCAR

GRIP v0.4 - GRIP with top-flight models		1011 cases	2018-2019	Atlantic only							
Data source	irma:/d1/biswas	/hfip-eval/OFCL_	HWRF_COTC_DS	HP_LGEM_CHP6_GB	HC_GH62_GC62_C	GH6L_GC6L/OFC	L_HWRF_COTC_DSHP	LGEM_CHP6_GB	HC_GH62_GC62	_GH6L_GC6L_w	ater_only_
Verification protocol	standard NHC VX rules										
RI threshold	30 kt in 24 h		Values that are input by hand								
	PODY	FAR	FBIAS	1 - POD	SR	Bias sign	Goodness_distance	GSS	CSI		
CHP6	0.10526	0.92079	1.32895	0.89474	0.07921	1	1.283905718	0.0025248	0.047337		
GBHC	0.078947	0.57143	0.18421	0.921053	0.42857	1	1.083914606	0.059647	0.071429		
GC62	0.14474	0.42105	0.25	0.85526	0.57895	1	0.9532852512	0.11592	0.13095		
GC6L	0.13158	0.61538	0.34211	0.86842	0.38462	1	1.06435231	0.089349	0.1087		
GH62	0.19737	0.61538	0.513166	0.80263	0.38462	1	1.011388877	0.12433	0.15		
GH6L	0.17105	0.69767	0.56579	0.82895	0.30233	1	1.083467365	0.095045	0.12264		
HWRF	0.18421	0.57576	0.43421	0.81579	0.42424	1	0.9985053338	0.12451	0.14737		
IVCN	0.013158	0	0.013158	0.986842	1	1	0.986842	0.012181	0.013158		
OFCL	0.11842	0.25	0.15789	0.88158	0.75	1	0.9163423467	0.10369	0.113992		

GRIP v0.4 - GC6 Su	ite	1228 cases	2018-2019	Atlantic only					
Data source	irma:/d1/biswas	s/hfip-eval//d1/b	iswas/hfip-eval/C	FCL_HWRF_CHP6_G	C61_GC62_GC63_	_GC64_GC65_GC	66_GC67_GC68_GC69	_GC6L/OFCL_HW	RF_CHP6_GC61_GC
Verification protocol	standard NHC VX rules								
RI threshold	30 kt in 24 h		Values that are	input by hand					
	PODY	FAR	FBIAS	1 - POD	SR	Bias sign	Goodness_distance	GSS	CSI
CHP6	0.09195	0.92233	1.18391	0.90805	0.07767	1	1.294313498	0.0040227	0.043956
GC61	0.09195	0.46667	0.17241	0.90805	0.53333	1	1.020948427	0.074645	0.085106
GC62	0.12644	0.45	0.22989	0.87356	0.55	1	0.982653079	0.10132	0.11458
GC63	0.12644	0.57692	0.29885	0.87356	0.42308	1	1.046873326	0.091435	0.10784
GC64	0.13793	0.72727	0.50575	0.86207	0.27273	1	1.12786805	0.076653	0.10084
GC65	0.13793	0.80328	0.70115	0.86207	0.19672	1	1.178313814	0.058311	0.088235
GC66	0.13793	0.81818	0.75862	0.86207	0.18182	1	1.188521433	0.053726	0.085106
GC67	0.13793	0.85	0.91954	0.86207	0.15	1	1.210646391	0.042404	0.077419
GC68	0.11494	0.88235	0.97701	0.88506	0.11765	1	1.249749065	0.025504	0.061728
GC69	0.11494	0.89474	1.095195	0.88506	0.10526	1	1.258527263	0.01793	0.05814
GC6L	0.12644	0.60714	0.32184	0.87356	0.39286	1	1.063826139	0.088381	0.10577
HWRF	0.18391	0.56757	0.42529	0.81609	0.43243	1	0.9940516048	0.12696	0.14815
OFCL	0.10345	0.25	0.13793	0.89655	0.75	1	0.9307534058	0.09147	0.1

Summary

1. Formulate a post-processing framework that combines existing forecast aids in a way that accounts for the probabilistic nature of RI

- GRIP framework has been developed to combine the best attributes of multiple forecast input sources.
- GRIP combines the proven general intensity forecast skill of existing 3-d full physics models with the substantial skill in predicting RI provided by probabilistic forecast techniques.
- 2. Demonstrate that such performance can be potentially useful for improving deterministic predictions of RI
- Several GRIP candidates show potential in this regard.
- In particular, GC6L demonstrates that application of the GRIP framework can maintain the quality of HCCA's consistent deterministic forecasts while improving its performance during RI.

3. Such a framework should improve upon the reference model's Probability of Detection (POD) for RI without introducing large biases or significantly increasing the False Alarm Rate

- Early generation GRIP candidates do not yet show a significant improvement for RI, but this may be due to our limited options for probabilistic forecast aid (just HLOG and only for 24 h).
- Need to evaluate intensity error characteristics during RI episodes and examine case studies.

Future work

1. Develop GRIP configurations with existing operational probabilistic RI models such as SHIPS-RII, Analog Ensemble (via ATCF e-decks)

- 2. Run for other basins (e.g., Western Pacific) and compare to other probabilistic -> deterministic schemes (e.g., RIPA)
- 3. Develop an internally consistent version of GRIP that is based entirely from FHLO Use FHLO's mean as reference, 99th %-ile as upper bound, FHLO's % of members undergoing RI as the probabilistic component
- 4. Develop an extended version of the GRIP framework which incorporates forecast information from one or more global ensemble prediction systems

Acknowledgments and References

Questions / comments: jvigh@ucar.edu

Acknowledgments

• We acknowledge the support from the National Oceanic and Atmospheric Administration (NOAA) Hurricane Forecast Improvement Program (HFIP) through grant number NA18NWS4680058

• This material is based upon work supported by the National Center for Atmospheric Research, which is major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977

References cited

Emanuel, K., DesAutels, C., Holloway, C., and Korty, R. (2004). Environmental Control of Tropical Cyclone Intensity. *J. Atmos. Sci.*, **61**(7), 843-858. https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2

- Lin, J., Emanuel, K., and Vigh, J. L. (2020). Forecasts of Hurricanes Using Large-Ensemble Outputs. *Wea. Forecast.* **35**(5), 1713-1731. https://doi.org/10.1175/WAF-D-19-0255.1
- Vigh, J. L., K. A. Emanuel, M. K. Biswas, E. A. Hendricks, and C. M. Rozoff: 2018: Exploring the Upper Bound of Tropical Cyclone Intensification. Oral Presentation, 33rd Conf. on Hurricanes and Tropical Meteorology, Session 12C: Tropical Cyclone Intensity IV: Axisymmetric Dynamics, Ponte Vedra Beach, FL, Amer. Meteor. Soc., Paper 12C.1, https://doi.org/10.13140/RG.2.2.23507.68645.

